ReMax: A Simple, Effective, and Efficient Reinforcement Learning Method for Aligning Large Language Models
- URL: http://arxiv.org/abs/2310.10505v4
- Date: Thu, 16 May 2024 02:22:23 GMT
- Title: ReMax: A Simple, Effective, and Efficient Reinforcement Learning Method for Aligning Large Language Models
- Authors: Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, Zhi-Quan Luo,
- Abstract summary: Reinforcement Learning from Human Feedback (RLHF) is key to aligning Large Language Models (LLMs)
We present ReMax, which leverages 3 properties of RLHF: fast simulation, deterministic transitions, and trajectory-level rewards.
It is simpler to implement, eliminates more than 4 hyper- parameters in PPO, reduces GPU memory usage, and shortens training time.
Applying ReMax to a Mistral-7B model resulted in a 94.78% win rate on the AlpacaEval leaderboard and a 7.739 score on MT-bench, setting a new SOTA for open-source 7B models
- Score: 30.276168676690045
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Reinforcement Learning from Human Feedback (RLHF) is key to aligning Large Language Models (LLMs), typically paired with the Proximal Policy Optimization (PPO) algorithm. While PPO is a powerful method designed for general reinforcement learning tasks, it is overly sophisticated for LLMs, leading to laborious hyper-parameter tuning and significant computation burdens. To make RLHF efficient, we present ReMax, which leverages 3 properties of RLHF: fast simulation, deterministic transitions, and trajectory-level rewards. These properties are not exploited in PPO, making it less suitable for RLHF. Building on the renowned REINFORCE algorithm, ReMax does not require training an additional value model as in PPO and is further enhanced with a new variance reduction technique. ReMax offers several benefits over PPO: it is simpler to implement, eliminates more than 4 hyper-parameters in PPO, reduces GPU memory usage, and shortens training time. ReMax can save about 46% GPU memory than PPO when training a 7B model and enables training on A800-80GB GPUs without the memory-saving offloading technique needed by PPO. Applying ReMax to a Mistral-7B model resulted in a 94.78% win rate on the AlpacaEval leaderboard and a 7.739 score on MT-bench, setting a new SOTA for open-source 7B models. These results show the effectiveness of ReMax while addressing the limitations of PPO in LLMs.
Related papers
- VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment [66.80143024475635]
We propose VinePPO, a straightforward approach to compute unbiased Monte Carlo-based estimates.
We show that VinePPO consistently outperforms PPO and other RL-free baselines across MATH and GSM8K datasets.
arXiv Detail & Related papers (2024-10-02T15:49:30Z) - UNA: Unifying Alignments of RLHF/PPO, DPO and KTO by a Generalized Implicit Reward Function [14.7365465149829]
We propose textbfUNified textbfAlignment (UNA) which unifies RLHF/PPO, DPO and KTO.
With this novel mapping between a reward model and an optimal policy, UNA can 1.
outperform RLHF/PPO while simplify, stabilize, speed up and reduce memory burden of RL fine-tuning process.
arXiv Detail & Related papers (2024-08-27T18:04:07Z) - REBEL: Reinforcement Learning via Regressing Relative Rewards [59.68420022466047]
We propose REBEL, a minimalist RL algorithm for the era of generative models.
In theory, we prove that fundamental RL algorithms like Natural Policy Gradient can be seen as variants of REBEL.
We find that REBEL provides a unified approach to language modeling and image generation with stronger or similar performance as PPO and DPO.
arXiv Detail & Related papers (2024-04-25T17:20:45Z) - Parameter Efficient Reinforcement Learning from Human Feedback [27.687265760622918]
Reinforcement Learning from Human Feedback (RLHF) effectively aligns pretrained Large Language and Vision-Language Models with human preferences.
To alleviate some of the computational burden of fine-tuning, efficient methods, like LoRA were introduced.
We benchmark the PE-RLHF setup on six diverse datasets spanning summarization, harmless/helpful response generation, UI automation, and visual question answering.
arXiv Detail & Related papers (2024-03-15T21:43:46Z) - Back to Basics: Revisiting REINFORCE Style Optimization for Learning
from Human Feedback in LLMs [29.505270680223003]
AI alignment in the shape of Reinforcement Learning from Human Feedback is increasingly treated as a crucial ingredient for high performance large language models.
Proximal Policy Optimization (PPO) has been positioned by recent literature as the canonical method for the RL part of RLHF.
We show that many components of PPO are unnecessary in an RLHF context and that simpler REINFORCE-style optimization variants outperform both PPO and newly proposed "RL-free" methods such as DPO and RAFT.
arXiv Detail & Related papers (2024-02-22T17:52:34Z) - Exploring the impact of low-rank adaptation on the performance,
efficiency, and regularization of RLHF [47.960563851948514]
We investigate an efficient implementation of RLHF using low-rank adaptation (LoRA)
Our implementation achieves better performance than the publicly-released AlpacaFarm checkpoint with full model fine-tuning.
We release our code and pretrained checkpoints to facilitate future research on more efficient RLHF.
arXiv Detail & Related papers (2023-09-16T17:31:36Z) - Efficient RLHF: Reducing the Memory Usage of PPO [61.45357428856269]
We present a comprehensive analysis of the memory usage, performance, and training time of memory-savings techniques for PPO.
We introduce Hydra-RLHF by first integrating the SFT and Reward models and then dynamically turning LoRA "off" during training.
Our results demonstrate that Hydra-PPO is a simple and promising solution for enabling more widespread usage of RLHF.
arXiv Detail & Related papers (2023-09-01T22:57:20Z) - Secrets of RLHF in Large Language Models Part I: PPO [81.01936993929127]
Large language models (LLMs) have formulated a blueprint for the advancement of artificial general intelligence.
reinforcement learning with human feedback (RLHF) emerges as the pivotal technological paradigm underpinning this pursuit.
In this report, we dissect the framework of RLHF, re-evaluate the inner workings of PPO, and explore how the parts comprising PPO algorithms impact policy agent training.
arXiv Detail & Related papers (2023-07-11T01:55:24Z) - Direct Preference Optimization: Your Language Model is Secretly a Reward Model [119.65409513119963]
We introduce a new parameterization of the reward model in RLHF that enables extraction of the corresponding optimal policy in closed form.
The resulting algorithm, which we call Direct Preference Optimization (DPO), is stable, performant, and computationally lightweight.
Our experiments show that DPO can fine-tune LMs to align with human preferences as well as or better than existing methods.
arXiv Detail & Related papers (2023-05-29T17:57:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.