論文の概要: Enhancing ML model accuracy for Digital VLSI circuits using diffusion
models: A study on synthetic data generation
- arxiv url: http://arxiv.org/abs/2310.10691v1
- Date: Sun, 15 Oct 2023 14:20:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-18 19:46:12.565800
- Title: Enhancing ML model accuracy for Digital VLSI circuits using diffusion
models: A study on synthetic data generation
- Title(参考訳): 拡散モデルを用いたディジタルVLSI回路のMLモデルの精度向上:合成データ生成に関する研究
- Authors: Prasha Srivastava, Pawan Kumar, Zia Abbas
- Abstract要約: 本研究では,電子回路の人工データ生成における拡散モデルの利用について検討した。
我々は,22nmCMOS技術ノードを用いたHSPICE設計環境におけるシミュレーションを用いて,提案した拡散モデルのための代表的実時間トレーニングデータを得る。
- 参考スコア(独自算出の注目度): 0.5363664265121232
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative AI has seen remarkable growth over the past few years, with
diffusion models being state-of-the-art for image generation. This study
investigates the use of diffusion models in generating artificial data
generation for electronic circuits for enhancing the accuracy of subsequent
machine learning models in tasks such as performance assessment, design, and
testing when training data is usually known to be very limited. We utilize
simulations in the HSPICE design environment with 22nm CMOS technology nodes to
obtain representative real training data for our proposed diffusion model. Our
results demonstrate the close resemblance of synthetic data using diffusion
model to real data. We validate the quality of generated data, and demonstrate
that data augmentation certainly effective in predictive analysis of VLSI
design for digital circuits.
- Abstract(参考訳): 生成AIはここ数年で顕著な成長を遂げており、拡散モデルは画像生成の最先端にある。
本研究では,電子回路の人工データ生成における拡散モデルの適用について,通常,トレーニングデータに制限がある場合,性能評価や設計,テストなどのタスクにおいて,その後の機械学習モデルの精度を高めるために検討した。
我々は,22nmCMOS技術ノードを用いたHSPICE設計環境におけるシミュレーションを用いて,提案した拡散モデルのための代表的実データを得る。
本結果は,拡散モデルを用いた合成データの実データとの密接な類似性を示した。
生成したデータの品質を検証し、デジタル回路におけるVLSI設計の予測解析にデータ拡張が確実に有効であることを示す。
関連論文リスト
- Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - On the Stability of Iterative Retraining of Generative Models on their own Data [56.153542044045224]
混合データセットに対する生成モデルの訓練が与える影響について検討する。
まず、初期生成モデルがデータ分布を十分に近似する条件下で反復学習の安定性を実証する。
我々は、正規化フローと最先端拡散モデルを繰り返し訓練することにより、合成画像と自然画像の両方に関する我々の理論を実証的に検証する。
論文 参考訳(メタデータ) (2023-09-30T16:41:04Z) - Qualitative Data Augmentation for Performance Prediction in VLSI
circuits [2.1227526213206542]
本研究では,回路データにGANを用いた人工データの生成と評価を行う。
トレーニングデータは、TSMC 180nmおよび22nmCMOS技術ノードを用いたCadence Virtuoso、HSPICE、Microcap設計環境における様々なシミュレーションによって得られる。
実験結果から,提案した人工データ生成はMLモデルを大幅に改善し,元のパーセンテージ誤差の50%以上削減できることがわかった。
論文 参考訳(メタデータ) (2023-02-15T10:14:12Z) - A Bayesian Generative Adversarial Network (GAN) to Generate Synthetic
Time-Series Data, Application in Combined Sewer Flow Prediction [3.3139597764446607]
機械学習では、生成モデル(generative model)は、データ分散を学習して人工データを生成する方法のクラスである。
本研究では,限られた時系列データのバランスをとるために,合成時系列を生成するGANモデルを開発した。
本研究の目的は, 降水量データを用いて流れを予測し, モデル性能における合成データを用いたデータ増大の影響を検討することである。
論文 参考訳(メタデータ) (2023-01-31T16:12:26Z) - A Physics-informed Diffusion Model for High-fidelity Flow Field
Reconstruction [0.0]
本研究では,高忠実度データのみを使用する拡散モデルを提案する。
異なる構成で、本モデルでは、正規の低忠実度サンプルまたはスパース測定サンプルから高忠実度データを再構成することができる。
本モデルでは, 異なる入力源に基づく2次元乱流の正確な再構成結果が得られるが, 再学習は行わない。
論文 参考訳(メタデータ) (2022-11-26T23:14:18Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
リソグラフィーモデリングは、チップ設計マスクが製造可能であることを保証するため、チップ設計において重要な問題である。
機械学習の最近の進歩は、時間を要するリソグラフィーシミュレーションをディープニューラルネットワークに置き換えるための代替ソリューションを提供している。
本稿では,限られたデータのジレンマを解消し,機械学習モデルの性能を向上させるために,データ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-27T20:53:39Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Data Augmentation for Enhancing EEG-based Emotion Recognition with Deep
Generative Models [13.56090099952884]
本稿では、感情認識モデルの性能を高めるために、脳波トレーニングデータを増強する3つの方法を提案する。
フル利用戦略では、生成されたすべてのデータが、生成されたデータの品質を判断することなく、トレーニングデータセットに拡張される。
実験結果から,脳波を用いた感情認識モデルの性能向上を図った。
論文 参考訳(メタデータ) (2020-06-04T21:23:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。