Theory of Mind for Multi-Agent Collaboration via Large Language Models
- URL: http://arxiv.org/abs/2310.10701v3
- Date: Wed, 26 Jun 2024 20:15:34 GMT
- Title: Theory of Mind for Multi-Agent Collaboration via Large Language Models
- Authors: Huao Li, Yu Quan Chong, Simon Stepputtis, Joseph Campbell, Dana Hughes, Michael Lewis, Katia Sycara,
- Abstract summary: This study evaluates Large Language Models (LLMs)-based agents in a multi-agent cooperative text game with Theory of Mind (ToM) inference tasks.
We observed evidence of emergent collaborative behaviors and high-order Theory of Mind capabilities among LLM-based agents.
- Score: 5.2767999863286645
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While Large Language Models (LLMs) have demonstrated impressive accomplishments in both reasoning and planning, their abilities in multi-agent collaborations remains largely unexplored. This study evaluates LLM-based agents in a multi-agent cooperative text game with Theory of Mind (ToM) inference tasks, comparing their performance with Multi-Agent Reinforcement Learning (MARL) and planning-based baselines. We observed evidence of emergent collaborative behaviors and high-order Theory of Mind capabilities among LLM-based agents. Our results reveal limitations in LLM-based agents' planning optimization due to systematic failures in managing long-horizon contexts and hallucination about the task state. We explore the use of explicit belief state representations to mitigate these issues, finding that it enhances task performance and the accuracy of ToM inferences for LLM-based agents.
Related papers
- Insight-V: Exploring Long-Chain Visual Reasoning with Multimodal Large Language Models [64.1799100754406]
Large Language Models (LLMs) demonstrate enhanced capabilities and reliability by reasoning more.
Despite various efforts to improve LLM reasoning, high-quality long-chain reasoning data and optimized training pipelines still remain inadequately explored in vision-language tasks.
We present Insight-V, an early effort to 1) scalably produce long and robust reasoning data for complex multi-modal tasks, and 2) an effective training pipeline to enhance the reasoning capabilities of MLLMs.
arXiv Detail & Related papers (2024-11-21T18:59:55Z) - Hypothetical Minds: Scaffolding Theory of Mind for Multi-Agent Tasks with Large Language Models [4.9108308035618515]
Multi-agent reinforcement learning (MARL) methods struggle with the non-stationarity of multi-agent systems.
Here, we leverage large language models (LLMs) to create an autonomous agent that can handle these challenges.
Our agent, Hypothetical Minds, consists of a cognitively-inspired architecture, featuring modular components for perception, memory, and hierarchical planning over two levels of abstraction.
arXiv Detail & Related papers (2024-07-09T17:57:15Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - LLM-based Multi-Agent Reinforcement Learning: Current and Future Directions [8.55917897789612]
We focus on the cooperative tasks of multiple agents with a common goal and communication among them.
We also consider human-in/on-the-loop scenarios enabled by the language component in the framework.
arXiv Detail & Related papers (2024-05-17T22:10:23Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
Open-source pre-trained Large Language Models (LLMs) exhibit strong language understanding and generation capabilities.
When used as agents for dealing with complex problems in the real world, their performance is far inferior to large commercial models such as ChatGPT and GPT-4.
arXiv Detail & Related papers (2024-03-29T03:48:12Z) - Embodied LLM Agents Learn to Cooperate in Organized Teams [46.331162216503344]
Large Language Models (LLMs) have emerged as integral tools for reasoning, planning, and decision-making.
This paper introduces a framework that imposes prompt-based organization structures on LLM agents to mitigate these problems.
arXiv Detail & Related papers (2024-03-19T06:39:47Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corex is a suite of novel general-purpose strategies that transform Large Language Models into autonomous agents.
Inspired by human behaviors, Corex is constituted by diverse collaboration paradigms including Debate, Review, and Retrieve modes.
We demonstrate that orchestrating multiple LLMs to work in concert yields substantially better performance compared to existing methods.
arXiv Detail & Related papers (2023-09-30T07:11:39Z) - Improving Planning with Large Language Models: A Modular Agentic Architecture [7.63815864256878]
Large language models (LLMs) often struggle with tasks that require multi-step reasoning or goal-directed planning.
We propose an agentic architecture, the Modular Agentic Planner (MAP), in which planning is accomplished via the recurrent interaction of specialized modules.
We find that MAP yields significant improvements over both standard LLM methods.
arXiv Detail & Related papers (2023-09-30T00:10:14Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
Large Language Models (LLMs) are becoming increasingly smart and autonomous, targeting real-world pragmatic missions beyond traditional NLP tasks.
We present AgentBench, a benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities.
arXiv Detail & Related papers (2023-08-07T16:08:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.