論文の概要: Cross-Platform Social Dynamics: An Analysis of ChatGPT and COVID-19
Vaccine Conversations
- arxiv url: http://arxiv.org/abs/2310.11116v1
- Date: Tue, 17 Oct 2023 09:58:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-18 16:42:26.574271
- Title: Cross-Platform Social Dynamics: An Analysis of ChatGPT and COVID-19
Vaccine Conversations
- Title(参考訳): クロスプラットフォームソーシャルダイナミクス:ChatGPTとCOVID-19ワクチンの会話の分析
- Authors: Shayan Alipour, Alessandro Galeazzi, Emanuele Sangiorgio, Michele
Avalle, Ljubisa Bojic, Matteo Cinelli, Walter Quattrociocchi
- Abstract要約: 2022年のChatGPTのリリースと2021年の新型コロナウイルスワクチンに関する世界的な議論という、2つの重要な出来事に関する1200万件以上の投稿とニュース記事を分析した。
データはTwitter、Facebook、Instagram、Reddit、YouTube、GDELTなど、複数のプラットフォームから収集された。
トピックモデリング手法を用いて,各プラットフォーム上の異なる主題のエミュレーションを明らかにし,その特徴と対象のオーディエンスを反映した。
- 参考スコア(独自算出の注目度): 37.69303106863453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The role of social media in information dissemination and agenda-setting has
significantly expanded in recent years. By offering real-time interactions,
online platforms have become invaluable tools for studying societal responses
to significant events as they unfold. However, online reactions to external
developments are influenced by various factors, including the nature of the
event and the online environment. This study examines the dynamics of public
discourse on digital platforms to shed light on this issue. We analyzed over 12
million posts and news articles related to two significant events: the release
of ChatGPT in 2022 and the global discussions about COVID-19 vaccines in 2021.
Data was collected from multiple platforms, including Twitter, Facebook,
Instagram, Reddit, YouTube, and GDELT. We employed topic modeling techniques to
uncover the distinct thematic emphases on each platform, which reflect their
specific features and target audiences. Additionally, sentiment analysis
revealed various public perceptions regarding the topics studied. Lastly, we
compared the evolution of engagement across platforms, unveiling unique
patterns for the same topic. Notably, discussions about COVID-19 vaccines
spread more rapidly due to the immediacy of the subject, while discussions
about ChatGPT, despite its technological importance, propagated more gradually.
- Abstract(参考訳): 近年,情報伝達とアジェンダ設定におけるソーシャルメディアの役割が大幅に拡大している。
リアルタイムの対話を提供することによって、オンラインプラットフォームは、重要な出来事に対する社会的反応を研究するための貴重なツールになっている。
しかし,外部開発に対するオンライン反応は,イベントの性質やオンライン環境など,さまざまな要因の影響を受けている。
本研究は,デジタルプラットフォーム上での公開談話のダイナミクスを考察し,この問題を明らかにした。
2022年のChatGPTのリリースと2021年のCOVID-19ワクチンに関する世界的な議論の2つの重要な出来事に関する1200万件以上の投稿とニュース記事を分析した。
データはTwitter、Facebook、Instagram、Reddit、YouTube、GDELTなど、複数のプラットフォームから収集された。
トピックモデリング手法を用いて,各プラットフォームにおける個別のテーマ的流行を解明し,それぞれの特徴と対象オーディエンスを反映させた。
さらに、感情分析により、研究対象に関する様々な公的な認識が明らかになった。
最後に、プラットフォーム間のエンゲージメントの進化を比較し、同じトピックに対するユニークなパターンを公開しました。
特筆すべきは、新型コロナウイルスワクチンに関する議論は、新型コロナウイルスの感染拡大により急速に広がり、chatgptに関する議論はその技術的重要性にもかかわらず、徐々に伝播していったことである。
関連論文リスト
- Community Shaping in the Digital Age: A Temporal Fusion Framework for Analyzing Discourse Fragmentation in Online Social Networks [45.58331196717468]
本研究では,ソーシャルメディアプラットフォームにおけるオンラインコミュニティの動態を解析するための枠組みを提案する。
テキスト分類と動的ソーシャルネットワーク分析を組み合わせることで,コミュニティの形成と進化を促進するメカニズムを明らかにする。
論文 参考訳(メタデータ) (2024-09-18T03:03:02Z) - NewsDialogues: Towards Proactive News Grounded Conversation [72.10055780635625]
本稿では,対話システムがニュースの重要な話題に基づいて会話を積極的にリードする新しいタスク,Proactive News Grounded Conversationを提案する。
この課題をさらに発展させるために、人間と人間の対話データセットtsNewsDialoguesを収集し、合計14.6Kの発話を含む1Kの会話を含む。
論文 参考訳(メタデータ) (2023-08-12T08:33:42Z) - Public Attitudes Toward ChatGPT on Twitter: Sentiments, Topics, and
Occupations [1.6466986427682635]
感情分析などの自然言語処理技術を適用し,ChatGPTに対する公衆の態度を検討した。
私たちの感情分析の結果、全体の感情は肯定的であり、ネガティブな感情は時間の経過とともに減少していたことが示唆された。
私たちのトピックモデルは、最も人気のあるトピックが、教育、バード、検索エンジン、OpenAI、マーケティング、サイバーセキュリティであることを示している。
論文 参考訳(メタデータ) (2023-06-22T15:10:18Z) - Visualizing Relation Between (De)Motivating Topics and Public Stance
toward COVID-19 Vaccine [0.0]
本研究では,新型コロナウイルス感染拡大に伴うTwitter圏内の話題を検査・分析するインタラクティブな可視化ツールを提案する。
このツールは、視覚分析のあらゆるシナリオに対して容易に一般化することができ、研究者や一般大衆のソーシャルメディアデータの透明性を高めることができる。
論文 参考訳(メタデータ) (2023-06-21T09:01:53Z) - Twitter conversations predict the daily confirmed COVID-19 cases [0.2320417845168326]
パンデミック特有の談話は、TwitterやWeiboのようなマイクロブログプラットフォーム上では、今も続いている。
本稿では、新型コロナウイルス関連Twitter会話から複数の時系列を設計するための感情関連トピックベースの方法論を提案する。
モデリングにソーシャルメディア変数を組み込むことで、RMSEのベースラインモデルよりも48.83-51.38%の改善がもたらされることが示されている。
論文 参考訳(メタデータ) (2022-06-21T15:31:06Z) - The Spread of Propaganda by Coordinated Communities on Social Media [43.2770127582382]
我々は、2019年イギリス総選挙に関する大規模なTwitterデータセット上で、プロパガンダの拡散とその協調行動との相互作用を分析する。
プロパガンダの利用と協調行動を組み合わせることで、異なるコミュニティの真正性と有害性を明らかにすることができる。
論文 参考訳(メタデータ) (2021-09-27T13:39:10Z) - COVID-19 and Big Data: Multi-faceted Analysis for Spatio-temporal
Understanding of the Pandemic with Social Media Conversations [4.07452542897703]
ソーシャルメディアプラットフォームは、新型コロナウイルス(COVID-19)に関する世界的な会話の手段として機能している。
本稿では,パンデミックを取り巻くソーシャルメディア会話の重要コンテンツと特徴の分析,マイニング,追跡のための枠組みを提案する。
論文 参考訳(メタデータ) (2021-04-22T00:45:50Z) - Dynamic Social Media Monitoring for Fast-Evolving Online Discussions [39.81957479388813]
高速なオンライン議論における関連情報のカバレッジを最大化するための動的キーワード検索手法を提案する。
単語埋め込みモデルを用いてキーワードと予測モデル間の意味関係を表現し、将来の時系列を予測する。
我々は,最近の就任式に関するダイナミックな会話を取り上げ,動的データ収集システムをテストするために,現代のケーススタディを実施している。
論文 参考訳(メタデータ) (2021-02-24T23:00:42Z) - Leveraging Natural Language Processing to Mine Issues on Twitter During
the COVID-19 Pandemic [0.3674863913115431]
新型コロナウイルス感染症(COVID-19)の世界的な流行が世界中に広がった。
パンデミックに対する公衆の懸念や対応を理解するためには、機械学習技術を利用して無関係なツイートをフィルタリングするシステムが必要である。
本研究では,2020年1月1日から2020年4月30日までの間に,新型コロナウイルスのパンデミックに関連するツイートを識別するシステムを構築した。
論文 参考訳(メタデータ) (2020-10-31T22:26:26Z) - Echo Chambers on Social Media: A comparative analysis [64.2256216637683]
本研究では,4つのソーシャルメディアプラットフォーム上で100万ユーザが生成した100万個のコンテンツに対して,エコーチャンバーの操作的定義を導入し,大規模な比較分析を行う。
議論の的になっているトピックについてユーザの傾きを推測し、異なる特徴を分析してインタラクションネットワークを再構築する。
我々は、Facebookのようなニュースフィードアルゴリズムを実装するプラットフォームが、エコーチャンバの出現を招きかねないという仮説を支持する。
論文 参考訳(メタデータ) (2020-04-20T20:00:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。