論文の概要: LLMs as Hackers: Autonomous Linux Privilege Escalation Attacks
- arxiv url: http://arxiv.org/abs/2310.11409v6
- Date: Wed, 15 Oct 2025 10:14:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-16 15:32:12.791217
- Title: LLMs as Hackers: Autonomous Linux Privilege Escalation Attacks
- Title(参考訳): ハッカーとしてのLLM: 自律的なLinuxPrivategeエスカレーション攻撃
- Authors: Andreas Happe, Aaron Kaplan, Juergen Cito,
- Abstract要約: 我々は,完全に自動化されたLanguage Models(LLM)駆動の,自動Linux特権エスカレーション攻撃用プロトタイプであるHackingBuddyGPTを紹介する。
GPT-4-Turboは高い有効性を示し,33~83%の脆弱性を悪用した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Penetration-testing is crucial for identifying system vulnerabilities, with privilege-escalation being a critical subtask to gain elevated access to protected resources. Language Models (LLMs) presents new avenues for automating these security practices by emulating human behavior. However, a comprehensive understanding of LLMs' efficacy and limitations in performing autonomous Linux privilege-escalation attacks remains under-explored. To address this gap, we introduce hackingBuddyGPT, a fully automated LLM-driven prototype designed for autonomous Linux privilege-escalation. We curated a novel, publicly available Linux privilege-escalation benchmark, enabling controlled and reproducible evaluation. Our empirical analysis assesses the quantitative success rates and qualitative operational behaviors of various LLMs -- GPT-3.5-Turbo, GPT-4-Turbo, and Llama3 -- against baselines of human professional pen-testers and traditional automated tools. We investigate the impact of context management strategies, different context sizes, and various high-level guidance mechanisms on LLM performance. Results show that GPT-4-Turbo demonstrates high efficacy, successfully exploiting 33-83% of vulnerabilities, a performance comparable to human pen-testers (75%). In contrast, local models like Llama3 exhibited limited success (0-33%), and GPT-3.5-Turbo achieved moderate rates (16-50%). We show that both high-level guidance and state-management through LLM-driven reflection significantly boost LLM success rates. Qualitative analysis reveals both LLMs' strengths and weaknesses in generating valid commands and highlights challenges in common-sense reasoning, error handling, and multi-step exploitation, particularly with temporal dependencies. Cost analysis indicates that GPT-4-Turbo can achieve human-comparable performance at competitive costs, especially with optimized context management.
- Abstract(参考訳): 侵入テストはシステムの脆弱性を特定するために重要であり、特権拡大は保護されたリソースへのアクセスを高めるための重要なサブタスクである。
言語モデル(LLM)は、人間の振る舞いをエミュレートすることで、これらのセキュリティプラクティスを自動化するための新しい道を示す。
しかし、LLMsの有効性と自律的なLinux特権エスカレーション攻撃の実行制限に関する包括的な理解は、まだ未定のままである。
このギャップに対処するために,我々は,自動Linux特権エスカレーション用に設計された,完全に自動化されたLLM駆動プロトタイプであるHackingBuddyGPTを紹介した。
我々は、Linuxの権限昇格ベンチマークを新たに公開し、制御可能かつ再現可能な評価を可能にした。
GPT-3.5-Turbo, GPT-4-Turbo, Llama3の定量的成功率と定性的操作挙動を, 人間のペンテストと従来の自動ツールのベースラインに対して評価した。
我々は,LLMの性能に及ぼすコンテキスト管理戦略,異なるコンテキストサイズ,および様々なハイレベルガイダンス機構の影響について検討する。
GPT-4-Turboは高い有効性を示し,33~83%の脆弱性を悪用した。
対照的に、Llama3のようなローカルモデルは限定的な成功(0-33%)を示し、GPT-3.5-Turboは適度なレート(16-50%)を達成した。
LLMによるリフレクションによる高レベルガイダンスと状態管理の両方がLLMの成功率を大幅に向上させることを示す。
定性的な分析は、有効なコマンドを生成する際のLLMの長所と短所の両方を明らかにし、特に時間的依存関係において、常識的推論、エラーハンドリング、マルチステップのエクスプロイトの課題を強調している。
コスト分析により、GPT-4-Turboは競争コスト、特に最適化されたコンテキスト管理において、人間に比較可能な性能を達成できることが示されている。
関連論文リスト
- Large Language Models for In-File Vulnerability Localization Can Be "Lost in the End" [6.6389862916575275]
新しい開発手法では、研究者はLLMが大規模なファイルサイズの入力を効果的に分析できるかどうかを調べる必要がある。
本稿では,GPTモデルを含む,最先端のチャットベースのLLMがファイル内脆弱性の検出に有効であることを示す。
論文 参考訳(メタデータ) (2025-02-09T14:51:15Z) - LLM4CVE: Enabling Iterative Automated Vulnerability Repair with Large Language Models [9.946058168276744]
大規模言語モデル(LLM)は、多くのソフトウェア欠陥が自動的にパッチを当てられる可能性を開放した。
実世界のコードで脆弱な関数を高い精度で堅牢に修正する反復パイプラインを提案する。
また,Llama 370Bでは,人間の検証による品質スコアが8.51/10,Llama 370Bでは20%に向上した。
論文 参考訳(メタデータ) (2025-01-07T00:21:42Z) - AutoPT: How Far Are We from the End2End Automated Web Penetration Testing? [54.65079443902714]
LLMによって駆動されるPSMの原理に基づく自動浸透試験エージェントであるAutoPTを紹介する。
以上の結果から, AutoPT は GPT-4o ミニモデル上でのベースラインフレームワーク ReAct よりも優れていた。
論文 参考訳(メタデータ) (2024-11-02T13:24:30Z) - Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities [63.603861880022954]
本稿では,対戦型LDMをジェイルブレイク能力に富んだ反復的自己調整プロセスであるADV-LLMを紹介する。
我々のフレームワークは,様々なオープンソース LLM 上で ASR を100% 近く達成しながら,逆接接尾辞を生成する計算コストを大幅に削減する。
Llama3のみに最適化されているにもかかわらず、GPT-3.5では99%のASR、GPT-4では49%のASRを達成している。
論文 参考訳(メタデータ) (2024-10-24T06:36:12Z) - Towards Automated Penetration Testing: Introducing LLM Benchmark, Analysis, and Improvements [1.4433703131122861]
大規模言語モデル(LLM)は、サイバーセキュリティなど、さまざまな分野に可能性を示している。
現在、包括的で、オープンで、エンドツーエンドの自動浸透テストベンチマークはありません。
本稿では,LLMを用いた自動貫入試験のための新しいオープンベンチマークを提案する。
論文 参考訳(メタデータ) (2024-10-22T16:18:41Z) - Comparison of Static Application Security Testing Tools and Large Language Models for Repo-level Vulnerability Detection [11.13802281700894]
静的アプリケーションセキュリティテスト(SAST)は通常、セキュリティ脆弱性のソースコードをスキャンするために使用される。
ディープラーニング(DL)ベースの手法は、ソフトウェア脆弱性検出の可能性を実証している。
本稿では,ソフトウェア脆弱性を検出するために,15種類のSASTツールと12種類の最先端のオープンソースLLMを比較した。
論文 参考訳(メタデータ) (2024-07-23T07:21:14Z) - Automated Progressive Red Teaming [38.723546092060666]
手動のレッドチーム化は時間がかかり、コストがかかり、スケーラビリティが欠如しています。
我々は,効果的に学習可能なフレームワークとして,APRT(Automated Progressive Red Teaming)を提案する。
APRTは3つのコアモジュールを活用している: 多様な初期攻撃サンプルを生成するインテンション拡張LDM、敵のプロンプトを製作するインテンションハイディングLDM、そして、迅速な多様性と非効率なサンプルのフィルタリングを管理するEvil Makerである。
論文 参考訳(メタデータ) (2024-07-04T12:14:27Z) - AutoDetect: Towards a Unified Framework for Automated Weakness Detection in Large Language Models [95.09157454599605]
大規模言語モデル(LLM)はますます強力になってきていますが、それでも顕著ですが微妙な弱点があります。
従来のベンチマークアプローチでは、特定のモデルの欠陥を徹底的に特定することはできない。
さまざまなタスクにまたがるLLMの弱点を自動的に露呈する統合フレームワークであるAutoDetectを導入する。
論文 参考訳(メタデータ) (2024-06-24T15:16:45Z) - SORRY-Bench: Systematically Evaluating Large Language Model Safety Refusal Behaviors [64.9938658716425]
安全でないユーザリクエストを認識して拒否する、大規模な言語モデル(LLM)の既存の評価は、3つの制限に直面している。
まず、既存の手法では、安全でないトピックの粗い粒度を使い、いくつかのきめ細かいトピックを過剰に表現している。
第二に、プロンプトの言語的特徴とフォーマッティングは、様々な言語、方言など、多くの評価において暗黙的にのみ考慮されているように、しばしば見過ごされる。
第3に、既存の評価は大きなLCMに頼っているため、コストがかかる可能性がある。
論文 参考訳(メタデータ) (2024-06-20T17:56:07Z) - LLM Agents can Autonomously Exploit One-day Vulnerabilities [2.3999111269325266]
LLMエージェントは現実世界のシステムにおいて,1日の脆弱性を自律的に悪用できることを示す。
我々の GPT-4 エージェントは高性能に CVE 記述を必要とする。
以上の結果から,高能率LLMエージェントの広範な展開に関する疑問が浮かび上がっている。
論文 参考訳(メタデータ) (2024-04-11T22:07:19Z) - LLM4Vuln: A Unified Evaluation Framework for Decoupling and Enhancing LLMs' Vulnerability Reasoning [20.463200377413255]
脆弱性推論機能を分離し評価する統合評価フレームワークを導入する。
私たちは、Solidity、Java、C/C++で147の地道的脆弱性と147の非脆弱性ケースを使用して実験を行い、合計3,528のシナリオでそれらをテストしました。
本研究は,知識強化,文脈補充,即時的スキームの様々な影響を明らかにするものである。
論文 参考訳(メタデータ) (2024-01-29T14:32:27Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
SmoothLLMは,大規模言語モデル(LLM)に対するジェイルブレーキング攻撃を軽減するために設計された,最初のアルゴリズムである。
敵が生成したプロンプトが文字レベルの変化に対して脆弱であることから、我々の防衛はまず、与えられた入力プロンプトの複数のコピーをランダムに摂動し、対応する予測を集約し、敵の入力を検出する。
論文 参考訳(メタデータ) (2023-10-05T17:01:53Z) - Can Large Language Models Find And Fix Vulnerable Software? [0.0]
GPT-4は、その脆弱性の約4倍の脆弱性を同定した。
各脆弱性に対して実行可能な修正を提供し、偽陽性率の低いことを証明した。
GPT-4のコード修正により脆弱性の90%が減少し、コード行数はわずか11%増加した。
論文 参考訳(メタデータ) (2023-08-20T19:33:12Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
大規模言語モデル(LLM)は、様々なアプリケーションに統合されつつある。
本稿では、プロンプトインジェクション攻撃を用いて、攻撃者が元の命令をオーバーライドし、制御を採用する方法を示す。
我々は、コンピュータセキュリティの観点から、影響や脆弱性を体系的に調査する包括的な分類法を導出する。
論文 参考訳(メタデータ) (2023-02-23T17:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。