Multi Task Consistency Guided Source-Free Test-Time Domain Adaptation
Medical Image Segmentation
- URL: http://arxiv.org/abs/2310.11766v1
- Date: Wed, 18 Oct 2023 07:49:24 GMT
- Title: Multi Task Consistency Guided Source-Free Test-Time Domain Adaptation
Medical Image Segmentation
- Authors: Yanyu Ye, Zhenxi Zhang, Wei Wei, Chunna Tian
- Abstract summary: Source-free test-time adaptation for medical image segmentation aims to enhance the adaptability of segmentation models to diverse test sets of the target domain.
Ensuring consistency between target edges and paired inputs is crucial for test-time adaptation.
We propose a multi task consistency guided source-free test-time domain adaptation medical image segmentation method.
- Score: 8.591386126583748
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Source-free test-time adaptation for medical image segmentation aims to
enhance the adaptability of segmentation models to diverse and previously
unseen test sets of the target domain, which contributes to the
generalizability and robustness of medical image segmentation models without
access to the source domain. Ensuring consistency between target edges and
paired inputs is crucial for test-time adaptation. To improve the performance
of test-time domain adaptation, we propose a multi task consistency guided
source-free test-time domain adaptation medical image segmentation method which
ensures the consistency of the local boundary predictions and the global
prototype representation. Specifically, we introduce a local boundary
consistency constraint method that explores the relationship between tissue
region segmentation and tissue boundary localization tasks. Additionally, we
propose a global feature consistency constraint toto enhance the intra-class
compactness. We conduct extensive experiments on the segmentation of benchmark
fundus images. Compared to prediction directly by the source domain model, the
segmentation Dice score is improved by 6.27\% and 0.96\% in RIM-ONE-r3 and
Drishti GS datasets, respectively. Additionally, the results of experiments
demonstrate that our proposed method outperforms existing competitive domain
adaptation segmentation algorithms.
Related papers
- Test-Time Domain Generalization via Universe Learning: A Multi-Graph Matching Approach for Medical Image Segmentation [17.49123106322442]
Test-time adaptation (TTA) adjusts a learned model using unlabeled test data.
We incorporate morphological information and propose a framework based on multi-graph matching.
Our method outperforms other state-of-the-art approaches on two medical image segmentation benchmarks.
arXiv Detail & Related papers (2025-03-17T10:11:11Z) - Exploiting Aggregation and Segregation of Representations for Domain Adaptive Human Pose Estimation [50.31351006532924]
Human pose estimation (HPE) has received increasing attention recently due to its wide application in motion analysis, virtual reality, healthcare, etc.
It suffers from the lack of labeled diverse real-world datasets due to the time- and labor-intensive annotation.
We introduce a novel framework that capitalizes on both representation aggregation and segregation for domain adaptive human pose estimation.
arXiv Detail & Related papers (2024-12-29T17:59:45Z) - DARNet: Bridging Domain Gaps in Cross-Domain Few-Shot Segmentation with
Dynamic Adaptation [20.979759016826378]
Few-shot segmentation (FSS) aims to segment novel classes in a query image by using only a small number of supporting images from base classes.
In cross-domain FSS, leveraging features from label-rich domains for resource-constrained domains poses challenges due to domain discrepancies.
This work presents a Dynamically Adaptive Refine (DARNet) method that aims to balance generalization and specificity for CD-FSS.
arXiv Detail & Related papers (2023-12-08T03:03:22Z) - Frequency-mixed Single-source Domain Generalization for Medical Image
Segmentation [29.566769388674473]
The scarcity of medical image segmentation poses challenges in collecting sufficient training data for deep learning models.
We propose a novel approach called the Frequency-mixed Single-source Domain Generalization method (FreeSDG)
Experimental results on five datasets of three modalities demonstrate the effectiveness of the proposed algorithm.
arXiv Detail & Related papers (2023-07-18T06:44:45Z) - Bidirectional Domain Mixup for Domain Adaptive Semantic Segmentation [73.3083304858763]
This paper systematically studies the impact of mixup under the domain adaptaive semantic segmentation task.
In specific, we achieve domain mixup in two-step: cut and paste.
We provide extensive ablation experiments to empirically verify our main components of the framework.
arXiv Detail & Related papers (2023-03-17T05:22:44Z) - MADAv2: Advanced Multi-Anchor Based Active Domain Adaptation
Segmentation [98.09845149258972]
We introduce active sample selection to assist domain adaptation regarding the semantic segmentation task.
With only a little workload to manually annotate these samples, the distortion of the target-domain distribution can be effectively alleviated.
A powerful semi-supervised domain adaptation strategy is proposed to alleviate the long-tail distribution problem.
arXiv Detail & Related papers (2023-01-18T07:55:22Z) - Single-domain Generalization in Medical Image Segmentation via Test-time
Adaptation from Shape Dictionary [64.5632303184502]
Domain generalization typically requires data from multiple source domains for model learning.
This paper studies the important yet challenging single domain generalization problem, in which a model is learned under the worst-case scenario with only one source domain to directly generalize to different unseen target domains.
We present a novel approach to address this problem in medical image segmentation, which extracts and integrates the semantic shape prior information of segmentation that are invariant across domains.
arXiv Detail & Related papers (2022-06-29T08:46:27Z) - Gradual Domain Adaptation via Self-Training of Auxiliary Models [50.63206102072175]
Domain adaptation becomes more challenging with increasing gaps between source and target domains.
We propose self-training of auxiliary models (AuxSelfTrain) that learns models for intermediate domains.
Experiments on benchmark datasets of unsupervised and semi-supervised domain adaptation verify its efficacy.
arXiv Detail & Related papers (2021-06-18T03:15:25Z) - Unsupervised Domain Adaptation with Variational Approximation for
Cardiac Segmentation [15.2292571922932]
Unsupervised domain adaptation is useful in medical image segmentation.
We propose a new framework, where the latent features of both domains are driven towards a common and parameterized variational form.
This is achieved by two networks based on variational auto-encoders (VAEs) and a regularization for this variational approximation.
arXiv Detail & Related papers (2021-06-16T13:00:39Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Margin Preserving Self-paced Contrastive Learning Towards Domain
Adaptation for Medical Image Segmentation [51.93711960601973]
We propose a novel margin preserving self-paced contrastive Learning model for cross-modal medical image segmentation.
With the guidance of progressively refined semantic prototypes, a novel margin preserving contrastive loss is proposed to boost the discriminability of embedded representation space.
Experiments on cross-modal cardiac segmentation tasks demonstrate that MPSCL significantly improves semantic segmentation performance.
arXiv Detail & Related papers (2021-03-15T15:23:10Z) - Adapt Everywhere: Unsupervised Adaptation of Point-Clouds and Entropy
Minimisation for Multi-modal Cardiac Image Segmentation [10.417009344120917]
We present a novel UDA method for multi-modal cardiac image segmentation.
The proposed method is based on adversarial learning and adapts network features between source and target domain in different spaces.
We validated our method on two cardiac datasets by adapting from the annotated source domain to the unannotated target domain.
arXiv Detail & Related papers (2021-03-15T08:59:44Z) - Domain Adaptive Medical Image Segmentation via Adversarial Learning of
Disease-Specific Spatial Patterns [6.298270929323396]
We propose an unsupervised domain adaptation framework for boosting image segmentation performance across multiple domains.
We enforce architectures to be adaptive to new data by rejecting improbable segmentation patterns and implicitly learning through semantic and boundary information.
We demonstrate that recalibrating the deep networks on a few unlabeled images from the target domain improves the segmentation accuracy significantly.
arXiv Detail & Related papers (2020-01-25T13:48:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.