A Hyperparameter Study for Quantum Kernel Methods
- URL: http://arxiv.org/abs/2310.11891v3
- Date: Fri, 2 Aug 2024 15:38:38 GMT
- Title: A Hyperparameter Study for Quantum Kernel Methods
- Authors: Sebastian Egginger, Alona Sakhnenko, Jeanette Miriam Lorenz,
- Abstract summary: Quantum kernel methods are a promising method in quantum machine learning thanks to the guarantees connected to them.
Their accessibility for analytic considerations also opens up the possibility of prescreening datasets based on their potential for a quantum advantage.
Earlier works developed the geometric difference, which can be understood as a measure between two kernel-based machine learning approaches.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum kernel methods are a promising method in quantum machine learning thanks to the guarantees connected to them. Their accessibility for analytic considerations also opens up the possibility of prescreening datasets based on their potential for a quantum advantage. To do so, earlier works developed the geometric difference, which can be understood as a closeness measure between two kernel-based machine learning approaches, most importantly between a quantum kernel and a classical kernel. This metric links the quantum and classical model complexities, and it was developed to bound generalization error. Therefore, it raises the question of how this metric behaves in an empirical setting. In this work, we investigate the effects of hyperparameter choice on the model performance and the generalization gap between classical and quantum kernels. The importance of hyperparameters is well known also for classical machine learning. Of special interest are hyperparameters associated with the quantum Hamiltonian evolution feature map, as well as the number of qubits to trace out before computing a projected quantum kernel. We conduct a thorough investigation of the hyperparameters across 11 datasets and we identify certain aspects that can be exploited. Analyzing the effects of certain hyperparameter settings on the empirical performance, as measured by cross validation accuracy, and generalization ability, as measured by geometric difference described above, brings us one step closer to understanding the potential of quantum kernel methods on classical datasets.
Related papers
- Hybrid Quantum-Classical Clustering for Preparing a Prior Distribution of Eigenspectrum [10.950807972899575]
We consider preparing the prior distribution and circuits for the eigenspectrum of time-independent Hamiltonians.
The proposed algorithm unfolds in three strategic steps: Hamiltonian transformation, parameter representation, and classical clustering.
The algorithm is showcased through applications to the 1D Heisenberg system and the LiH molecular system.
arXiv Detail & Related papers (2024-06-29T14:21:55Z) - Neural auto-designer for enhanced quantum kernels [59.616404192966016]
We present a data-driven approach that automates the design of problem-specific quantum feature maps.
Our work highlights the substantial role of deep learning in advancing quantum machine learning.
arXiv Detail & Related papers (2024-01-20T03:11:59Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - Numerical evidence against advantage with quantum fidelity kernels on
classical data [12.621805903645711]
We show that quantum kernels suffer from exponential "flattening" of the spectrum as the number of qubits grows.
We provide extensive numerical evidence for this phenomenon utilizing multiple previously studied quantum feature maps and both synthetic and real data.
Our results show that unless novel techniques are developed to control the inductive bias of quantum kernels, they are unlikely to provide a quantum advantage on classical data.
arXiv Detail & Related papers (2022-11-29T19:23:11Z) - Variational Quantum Kernels with Task-Specific Quantum Metric Learning [0.8722210937404288]
Kernel methods rely on the notion of similarity between points in a higher (possibly infinite) dimensional feature space.
We discuss the use of variational quantum kernels with task-specific quantum metric learning to generate optimal quantum embeddings.
arXiv Detail & Related papers (2022-11-08T18:36:25Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Quantum tangent kernel [0.8921166277011345]
In this work, we explore a quantum machine learning model with a deep parameterized quantum circuit.
We find that parameters of a deep enough quantum circuit do not move much from its initial values during training.
Such a deep variational quantum machine learning can be described by another emergent kernel, quantum tangent kernel.
arXiv Detail & Related papers (2021-11-04T15:38:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.