Mean-field dynamics of an infinite-range interacting quantum system:
chaos, dynamical phase transition, and localisation
- URL: http://arxiv.org/abs/2310.11947v2
- Date: Fri, 2 Feb 2024 14:00:29 GMT
- Title: Mean-field dynamics of an infinite-range interacting quantum system:
chaos, dynamical phase transition, and localisation
- Authors: Bojan \v{Z}unkovi\v{c} and Antonio Zegarra
- Abstract summary: We investigate the dynamical properties of the XY spin 1/2 chain with infinite-range transverse interactions.
We find non-vanishing finite-time Lyapunov exponents and intermittent behavior signaled by fast and slow entropy growth periods.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the dynamical properties of the XY spin 1/2 chain with
infinite-range transverse interactions and find a dynamical phase transition
with a chaotic dynamical phase. In the latter, we find non-vanishing
finite-time Lyapunov exponents and intermittent behavior signaled by fast and
slow entropy growth periods. Further, we study the XY chain with a local
self-consistent transverse field and observe a localization phase transition.
We show that localization stabilizes the chaotic dynamical phase.
Related papers
- Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.
Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)
By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Dynamical Transition due to Feedback-induced Skin Effect [13.60996540056005]
We study the many-body dynamics in a continuously monitored free fermion system with conditional feedback under open boundary conditions.
We find a novel dynamical transition from a logarithmic scaling of the entanglement entropy to an area-law scaling as time evolves.
In addition, we find that while quasidisorder or disorder cannot drive a transition for the steady state, a transition occurs for the maximum entanglement entropy during the time evolution.
arXiv Detail & Related papers (2023-11-28T06:15:51Z) - Dynamics of inhomogeneous spin ensembles with all-to-all interactions:
breaking permutational invariance [49.1574468325115]
We investigate the consequences of introducing non-uniform initial conditions in the dynamics of spin ensembles characterized by all-to-all interactions.
We find that the dynamics of the spin ensemble now spans a more expansive effective Hilbert space.
arXiv Detail & Related papers (2023-09-19T16:44:14Z) - Multipartite Entanglement in the Measurement-Induced Phase Transition of
the Quantum Ising Chain [77.34726150561087]
External monitoring of quantum many-body systems can give rise to a measurement-induced phase transition.
We show that this transition extends beyond bipartite correlations to multipartite entanglement.
arXiv Detail & Related papers (2023-02-13T15:54:11Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Dissipative phase transitions in optomechanical systems [0.0]
We show that optomechanical quantum systems can undergo dissipative phase transitions within the limit of small nonlinear interaction and strong external drive.
In such a defined thermodynamical limit, the nonlinear interaction stabilizes optomechanical dynamics in strong and ultrastrong coupling regimes.
arXiv Detail & Related papers (2022-08-25T09:43:40Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Many-body dynamical phase transition in quasi-periodic potential [0.0]
We show signatures of DQPT in the many-body dynamics, when quenching is performed between phases belonging to different universality classes.
Strikingly, whenever quenching is performed from the low-entangled localized phase to the high-entangled delocalized phase, our studies suggest an intimate relationship between DQPT and the rate of the entanglement growth.
arXiv Detail & Related papers (2021-03-16T13:38:02Z) - Synchronisation phase as an indicator of persistent quantum correlations
between subsystems [68.8204255655161]
Spontaneous synchronisation is a collective phenomenon that can occur in both dynamical classical and quantum systems.
We show that our analysis applies to a variety of spontaneously synchronising open quantum systems.
arXiv Detail & Related papers (2020-06-29T17:21:32Z) - Dynamical crossover in the transient quench dynamics of short-range
transverse field Ising models [4.16271611433618]
We study the transient regimes of non-equilibrium processes probed by single-site observables that is magnetization per site.
The decay rates of time-dependent and single-site observables exhibit a dynamical crossover that separates two dynamical regions.
Our results reveal that scaling law exponent in short times at the close vicinity of the dynamical crossover is significantly different than the one predicted by analytical theory.
arXiv Detail & Related papers (2020-04-26T04:39:51Z) - Anomalous dynamics in the ergodic side of the Many-Body Localization
transition and the glassy phase of Directed Polymers in Random Media [11.278111020737132]
We show the existence of a glass transition within the extended regime separating a metallic-like phase at small disorder.
We relate the dynamical evolution in the glassy phase to the depinning transition of Directed Polymers.
By comparing the quantum dynamics on loop-less Cayley trees and Random Regular Graphs we discuss the effect of loops.
arXiv Detail & Related papers (2020-03-21T11:02:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.