Many-body dynamical phase transition in quasi-periodic potential
- URL: http://arxiv.org/abs/2103.09065v1
- Date: Tue, 16 Mar 2021 13:38:02 GMT
- Title: Many-body dynamical phase transition in quasi-periodic potential
- Authors: Ranjan Modak and Debraj Rakshit
- Abstract summary: We show signatures of DQPT in the many-body dynamics, when quenching is performed between phases belonging to different universality classes.
Strikingly, whenever quenching is performed from the low-entangled localized phase to the high-entangled delocalized phase, our studies suggest an intimate relationship between DQPT and the rate of the entanglement growth.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Much has been learned regarding dynamical quantum phase transition (DQPT) due
to sudden quenches across quantum critical points in traditional quantum
systems. However, not much has been explored when a system undergoes a
localization-delocalization transition. Here, we study one dimensional
fermionic systems in presence of a quasi-periodic potential, which induces
delocalization-localization transition even in 1D. We show signatures of DQPT
in the many-body dynamics, when quenching is performed between phases belonging
to different universality classes. We investigate how the non-analyticity in
the dynamical free energy gets affected with filling fractions in the bare
system and, further, study the fate of DQPT under interaction. Strikingly,
whenever quenching is performed from the low-entangled localized phase to the
high-entangled delocalized phase, our studies suggest an intimate relationship
between DQPT and the rate of the entanglement growth -- Faster growths of
entanglement entropy ensures quicker manifestation of the non-analiticties in
the many-body dynamical free energy.
Related papers
- Self-interaction induced phase modulation for directed current, energy diffusion and quantum scrambling in a Floquet ratchet system [0.0]
We investigate the dynamics of directed current, mean energy, and quantum scrambling in an interacting Floquet system with a ratchet potential.
The directed current is controlled by the phase of the ratchet potential and remains independent of the self-interaction strength.
The phase modulation induced by self-interaction dominates the quadratic growth of both mean energy and Out-of-Time-Ordered Correlators (OTOCs)
arXiv Detail & Related papers (2024-11-01T22:17:24Z) - Cahier de l'Institut Pascal: Noisy Quantum Dynamics and Measurement-Induced Phase Transitions [44.99833362998488]
We provide an analysis of recent results in the context of measurement-induced phase transitions in quantum systems.
Recent results show how varying the rate of projective measurements can induce phase transitions.
We present results on the non-local effects of local measurements by examining the field theory of critical ground states in Tomonaga-Luttinger liquids.
arXiv Detail & Related papers (2024-09-10T08:10:25Z) - Topological transitions in quantum jump dynamics: Hidden exceptional points [45.58759752275849]
Phenomena associated with exceptional points (EPs) have been extensively studied in relation to superconducting circuits.
We consider a monitored three level system and find multiple EPs in the Lindbladian eigenvalues considered as functions of a counting field.
We identify dynamical observables affected by these transitions and demonstrate how the underlying topology can be recovered from experimentally measured quantum jump distributions.
arXiv Detail & Related papers (2024-08-09T18:00:02Z) - Dynamics of spin-momentum entanglement from superradiant phase transitions [0.0]
We consider an experimentally feasible many-body cavity QED model describing a four-level system.
The resulting model comprises a pair of Dicke Hamiltonians constructed from pseudo-spin operators.
We discuss the role of cavity losses in steering the system's dynamics into such entangled states.
arXiv Detail & Related papers (2023-12-06T19:00:01Z) - Observation of a finite-energy phase transition in a one-dimensional
quantum simulator [39.899531336700136]
We show the first experimental demonstration of a finite-energy phase transition in 1D.
By preparing initial states with different energies in a 1D trapped-ion quantum simulator, we study the finite-energy phase diagram of a long-range interacting quantum system.
arXiv Detail & Related papers (2023-10-30T18:00:01Z) - Mean-field dynamics of an infinite-range interacting quantum system:
chaos, dynamical phase transition, and localisation [0.0]
We investigate the dynamical properties of the XY spin 1/2 chain with infinite-range transverse interactions.
We find non-vanishing finite-time Lyapunov exponents and intermittent behavior signaled by fast and slow entropy growth periods.
arXiv Detail & Related papers (2023-10-18T13:21:40Z) - Multipartite Entanglement in the Measurement-Induced Phase Transition of
the Quantum Ising Chain [77.34726150561087]
External monitoring of quantum many-body systems can give rise to a measurement-induced phase transition.
We show that this transition extends beyond bipartite correlations to multipartite entanglement.
arXiv Detail & Related papers (2023-02-13T15:54:11Z) - Theory of the Loschmidt echo and dynamical quantum phase transitions in
disordered Fermi systems [0.0]
We develop the theory of the Loschmidt echo and dynamical phase transitions in non-interacting strongly disordered Fermi systems after a quench.
In finite systems the Loschmidt echo displays zeros in the complex time plane that depend on the random potential realization.
We show that this dynamical phase transition can be understood as a transition in the distribution function of the smallest eigenvalue of the Loschmidt matrix.
arXiv Detail & Related papers (2022-09-22T10:04:45Z) - Continuous phase transition induced by non-Hermiticity in the quantum
contact process model [44.58985907089892]
How the property of quantum many-body system especially the phase transition will be affected by the non-hermiticity remains unclear.
We show that there is a continuous phase transition induced by the non-hermiticity in QCP.
We observe that the order parameter and susceptibility display infinitely even for finite size system, since non-hermiticity endows universality many-body system with different singular behaviour from classical phase transition.
arXiv Detail & Related papers (2022-09-22T01:11:28Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Finite-component dynamical quantum phase transitions [0.0]
We show two types of dynamical quantum phase transitions (DQPTs) in a quantum Rabi model.
One refers to distinct phases according to long-time averaged order parameters, the other is focused on the non-analytical behavior emerging in the rate function of the Loschmidt echo.
We find the critical times at which the rate function becomes non-analytical, showing its associated critical exponent as well as the corrections introduced by a finite frequency ratio.
arXiv Detail & Related papers (2020-08-31T17:31:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.