Exact and general decoupled solutions of the LMC Multitask Gaussian Process model
- URL: http://arxiv.org/abs/2310.12032v2
- Date: Thu, 21 Mar 2024 14:36:26 GMT
- Title: Exact and general decoupled solutions of the LMC Multitask Gaussian Process model
- Authors: Olivier Truffinet, Karim Ammar, Jean-Philippe Argaud, Bertrand Bouriquet,
- Abstract summary: The Linear Model of Co-regionalization (LMC) is a very general model of multitask gaussian process for regression or classification.
Recent work has shown that under some conditions the latent processes of the model can be decoupled, leading to a complexity that is only linear in the number of said processes.
We here extend these results, showing from the most general assumptions that the only condition necessary to an efficient exact computation of the LMC is a mild hypothesis on the noise model.
- Score: 28.32223907511862
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Linear Model of Co-regionalization (LMC) is a very general model of multitask gaussian process for regression or classification. While its expressivity and conceptual simplicity are appealing, naive implementations have cubic complexity in the number of datapoints and number of tasks, making approximations mandatory for most applications. However, recent work has shown that under some conditions the latent processes of the model can be decoupled, leading to a complexity that is only linear in the number of said processes. We here extend these results, showing from the most general assumptions that the only condition necessary to an efficient exact computation of the LMC is a mild hypothesis on the noise model. We introduce a full parametrization of the resulting \emph{projected LMC} model, and an expression of the marginal likelihood enabling efficient optimization. We perform a parametric study on synthetic data to show the excellent performance of our approach, compared to an unrestricted exact LMC and approximations of the latter. Overall, the projected LMC appears as a credible and simpler alternative to state-of-the art models, which greatly facilitates some computations such as leave-one-out cross-validation and fantasization.
Related papers
- Representation Surgery for Multi-Task Model Merging [57.63643005215592]
Multi-task learning (MTL) compresses the information from multiple tasks into a unified backbone to improve computational efficiency and generalization.
Recent work directly merges multiple independently trained models to perform MTL instead of collecting their raw data for joint training.
By visualizing the representation distribution of existing model merging schemes, we find that the merged model often suffers from the dilemma of representation bias.
arXiv Detail & Related papers (2024-02-05T03:39:39Z) - Sample Complexity Characterization for Linear Contextual MDPs [67.79455646673762]
Contextual decision processes (CMDPs) describe a class of reinforcement learning problems in which the transition kernels and reward functions can change over time with different MDPs indexed by a context variable.
CMDPs serve as an important framework to model many real-world applications with time-varying environments.
We study CMDPs under two linear function approximation models: Model I with context-varying representations and common linear weights for all contexts; and Model II with common representations for all contexts and context-varying linear weights.
arXiv Detail & Related papers (2024-02-05T03:25:04Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Sparse Variational Student-t Processes [8.46450148172407]
Student-t Processes are used to model heavy-tailed distributions and datasets with outliers.
We propose a sparse representation framework to allow Student-t Processes to be more flexible for real-world datasets.
We evaluate two proposed approaches on various synthetic and real-world datasets from UCI and Kaggle.
arXiv Detail & Related papers (2023-12-09T12:55:20Z) - Value-Biased Maximum Likelihood Estimation for Model-based Reinforcement
Learning in Discounted Linear MDPs [16.006893624836554]
We propose to solve linear MDPs through the lens of Value-Biased Maximum Likelihood Estimation (VBMLE)
VBMLE is computationally more efficient as it only requires solving one optimization problem in each time step.
In our regret analysis, we offer a generic convergence result of MLE in linear MDPs through a novel supermartingale construct.
arXiv Detail & Related papers (2023-10-17T18:27:27Z) - AdaMerging: Adaptive Model Merging for Multi-Task Learning [68.75885518081357]
This paper introduces an innovative technique called Adaptive Model Merging (AdaMerging)
It aims to autonomously learn the coefficients for model merging, either in a task-wise or layer-wise manner, without relying on the original training data.
Compared to the current state-of-the-art task arithmetic merging scheme, AdaMerging showcases a remarkable 11% improvement in performance.
arXiv Detail & Related papers (2023-10-04T04:26:33Z) - Maximize to Explore: One Objective Function Fusing Estimation, Planning,
and Exploration [87.53543137162488]
We propose an easy-to-implement online reinforcement learning (online RL) framework called textttMEX.
textttMEX integrates estimation and planning components while balancing exploration exploitation automatically.
It can outperform baselines by a stable margin in various MuJoCo environments with sparse rewards.
arXiv Detail & Related papers (2023-05-29T17:25:26Z) - Efficient Propagation of Uncertainty via Reordering Monte Carlo Samples [0.7087237546722617]
Uncertainty propagation is a technique to determine model output uncertainties based on the uncertainty in its input variables.
In this work, we investigate the hypothesis that while all samples are useful on average, some samples must be more useful than others.
We introduce a methodology to adaptively reorder MC samples and show how it results in reduction of computational expense of UP processes.
arXiv Detail & Related papers (2023-02-09T21:28:15Z) - Low-variance estimation in the Plackett-Luce model via quasi-Monte Carlo
sampling [58.14878401145309]
We develop a novel approach to producing more sample-efficient estimators of expectations in the PL model.
We illustrate our findings both theoretically and empirically using real-world recommendation data from Amazon Music and the Yahoo learning-to-rank challenge.
arXiv Detail & Related papers (2022-05-12T11:15:47Z) - RMFGP: Rotated Multi-fidelity Gaussian process with Dimension Reduction
for High-dimensional Uncertainty Quantification [12.826754199680474]
Multi-fidelity modelling enables accurate inference even when only a small set of accurate data is available.
By combining the realizations of the high-fidelity model with one or more low-fidelity models, the multi-fidelity method can make accurate predictions of quantities of interest.
This paper proposes a new dimension reduction framework based on rotated multi-fidelity Gaussian process regression and a Bayesian active learning scheme.
arXiv Detail & Related papers (2022-04-11T01:20:35Z) - Bayesian Inference of Minimally Complex Models with Interactions of Arbitrary Order [0.0]
Minimally Complex Models (MCMs) are simple models that have interactions of arbitrarily high order grouped into independent components of minimal complexity.
We show that Bayesian model selection restricted to MCMs is computationally feasible and has many advantages.
Because MCMs have interactions of any order, they can reveal the presence of important high-order dependencies in the data.
arXiv Detail & Related papers (2020-08-02T16:57:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.