Detecting LLM Fact-conflicting Hallucinations Enhanced by Temporal-logic-based Reasoning
- URL: http://arxiv.org/abs/2502.13416v1
- Date: Wed, 19 Feb 2025 04:21:46 GMT
- Title: Detecting LLM Fact-conflicting Hallucinations Enhanced by Temporal-logic-based Reasoning
- Authors: Ningke Li, Yahui Song, Kailong Wang, Yuekang Li, Ling Shi, Yi Liu, Haoyu Wang,
- Abstract summary: Drowzee is an end-to-end metamorphic testing framework for large language models.
It uses temporal logic to identify fact-conflicting hallucinations (FCH) in large language models.
Results show that Drowzee effectively identifies rates of non-temporal-related hallucinations ranging from 24.7% to 59.8%, and rates of temporal-related hallucinations ranging from 16.7% to 39.2%.
- Score: 10.606613497282398
- License:
- Abstract: Large language models (LLMs) face the challenge of hallucinations -- outputs that seem coherent but are actually incorrect. A particularly damaging type is fact-conflicting hallucination (FCH), where generated content contradicts established facts. Addressing FCH presents three main challenges: 1) Automatically constructing and maintaining large-scale benchmark datasets is difficult and resource-intensive; 2) Generating complex and efficient test cases that the LLM has not been trained on -- especially those involving intricate temporal features -- is challenging, yet crucial for eliciting hallucinations; and 3) Validating the reasoning behind LLM outputs is inherently difficult, particularly with complex logical relationships, as it requires transparency in the model's decision-making process. This paper presents Drowzee, an innovative end-to-end metamorphic testing framework that utilizes temporal logic to identify fact-conflicting hallucinations (FCH) in large language models (LLMs). Drowzee builds a comprehensive factual knowledge base by crawling sources like Wikipedia and uses automated temporal-logic reasoning to convert this knowledge into a large, extensible set of test cases with ground truth answers. LLMs are tested using these cases through template-based prompts, which require them to generate both answers and reasoning steps. To validate the reasoning, we propose two semantic-aware oracles that compare the semantic structure of LLM outputs to the ground truths. Across nine LLMs in nine different knowledge domains, experimental results show that Drowzee effectively identifies rates of non-temporal-related hallucinations ranging from 24.7% to 59.8%, and rates of temporal-related hallucinations ranging from 16.7% to 39.2%.
Related papers
- DecoPrompt : Decoding Prompts Reduces Hallucinations when Large Language Models Meet False Premises [28.72485319617863]
We propose a new prompting algorithm, named DecoPrompt, to mitigate hallucination.
DecoPrompt leverages LLMs to "decode" the false-premise prompts without really eliciting hallucination output from LLMs.
We perform experiments on two datasets, demonstrating that DecoPrompt can reduce hallucinations effectively on outputs from different LLMs.
arXiv Detail & Related papers (2024-11-12T00:48:01Z) - LongHalQA: Long-Context Hallucination Evaluation for MultiModal Large Language Models [96.64960606650115]
LongHalQA is an LLM-free hallucination benchmark that comprises 6K long and complex hallucination text.
LongHalQA is featured by GPT4V-generated hallucinatory data that are well aligned with real-world scenarios.
arXiv Detail & Related papers (2024-10-13T18:59:58Z) - Mitigating Entity-Level Hallucination in Large Language Models [11.872916697604278]
This paper proposes Dynamic Retrieval Augmentation based on hallucination Detection (DRAD) as a novel method to detect and mitigate hallucinations in Large Language Models (LLMs)
Experiment results show that DRAD demonstrates superior performance in both detecting and mitigating hallucinations in LLMs.
arXiv Detail & Related papers (2024-07-12T16:47:34Z) - Hallucination Detection: Robustly Discerning Reliable Answers in Large Language Models [70.19081534515371]
Large Language Models (LLMs) have gained widespread adoption in various natural language processing tasks.
They generate unfaithful or inconsistent content that deviates from the input source, leading to severe consequences.
We propose a robust discriminator named RelD to effectively detect hallucination in LLMs' generated answers.
arXiv Detail & Related papers (2024-07-04T18:47:42Z) - Drowzee: Metamorphic Testing for Fact-Conflicting Hallucination Detection in Large Language Models [11.138489774712163]
We propose an innovative approach leveraging logic programming to enhance metamorphic testing for detecting Fact-Conflicting Hallucinations (FCH)
Our method generates test cases and detects hallucinations across six different large language models spanning nine domains, revealing rates ranging from 24.7% to 59.8%.
arXiv Detail & Related papers (2024-05-01T17:24:42Z) - KnowHalu: Hallucination Detection via Multi-Form Knowledge Based Factual Checking [55.2155025063668]
KnowHalu is a novel approach for detecting hallucinations in text generated by large language models (LLMs)
It uses step-wise reasoning, multi-formulation query, multi-form knowledge for factual checking, and fusion-based detection mechanism.
Our evaluations demonstrate that KnowHalu significantly outperforms SOTA baselines in detecting hallucinations across diverse tasks.
arXiv Detail & Related papers (2024-04-03T02:52:07Z) - Enhancing Uncertainty-Based Hallucination Detection with Stronger Focus [99.33091772494751]
Large Language Models (LLMs) have gained significant popularity for their impressive performance across diverse fields.
LLMs are prone to hallucinate untruthful or nonsensical outputs that fail to meet user expectations.
We propose a novel reference-free, uncertainty-based method for detecting hallucinations in LLMs.
arXiv Detail & Related papers (2023-11-22T08:39:17Z) - Temporal Knowledge Question Answering via Abstract Reasoning Induction [32.08799860090592]
This study addresses the challenge of enhancing temporal knowledge reasoning in Large Language Models (LLMs)
We propose Abstract Reasoning Induction (ARI) framework, which divides temporal reasoning into two distinct phases: Knowledge-agnostic and Knowledge-based.
Our approach achieves remarkable improvements, with relative gains of 29.7% and 9.27% on two temporal QA datasets.
arXiv Detail & Related papers (2023-11-15T17:46:39Z) - FactCHD: Benchmarking Fact-Conflicting Hallucination Detection [64.4610684475899]
FactCHD is a benchmark designed for the detection of fact-conflicting hallucinations from LLMs.
FactCHD features a diverse dataset that spans various factuality patterns, including vanilla, multi-hop, comparison, and set operation.
We introduce Truth-Triangulator that synthesizes reflective considerations by tool-enhanced ChatGPT and LoRA-tuning based on Llama2.
arXiv Detail & Related papers (2023-10-18T16:27:49Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
This paper introduces a method for automatically constructing model-specific hallucination datasets based on existing fact-checking datasets called AutoHall.
We also propose a zero-resource and black-box hallucination detection method based on self-contradiction.
arXiv Detail & Related papers (2023-09-30T05:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.