Drowzee: Metamorphic Testing for Fact-Conflicting Hallucination Detection in Large Language Models
- URL: http://arxiv.org/abs/2405.00648v2
- Date: Tue, 3 Sep 2024 03:40:08 GMT
- Title: Drowzee: Metamorphic Testing for Fact-Conflicting Hallucination Detection in Large Language Models
- Authors: Ningke Li, Yuekang Li, Yi Liu, Ling Shi, Kailong Wang, Haoyu Wang,
- Abstract summary: We propose an innovative approach leveraging logic programming to enhance metamorphic testing for detecting Fact-Conflicting Hallucinations (FCH)
Our method generates test cases and detects hallucinations across six different large language models spanning nine domains, revealing rates ranging from 24.7% to 59.8%.
- Score: 11.138489774712163
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have transformed the landscape of language processing, yet struggle with significant challenges in terms of security, privacy, and the generation of seemingly coherent but factually inaccurate outputs, commonly referred to as hallucinations. Among these challenges, one particularly pressing issue is Fact-Conflicting Hallucination (FCH), where LLMs generate content that directly contradicts established facts. Tackling FCH poses a formidable task due to two primary obstacles: Firstly, automating the construction and updating of benchmark datasets is challenging, as current methods rely on static benchmarks that don't cover the diverse range of FCH scenarios. Secondly, validating LLM outputs' reasoning process is inherently complex, especially with intricate logical relations involved. In addressing these obstacles, we propose an innovative approach leveraging logic programming to enhance metamorphic testing for detecting Fact-Conflicting Hallucinations (FCH). Our method gathers data from sources like Wikipedia, expands it with logical reasoning to create diverse test cases, assesses LLMs through structured prompts, and validates their coherence using semantic-aware assessment mechanisms. Our method generates test cases and detects hallucinations across six different LLMs spanning nine domains, revealing hallucination rates ranging from 24.7% to 59.8%. Key observations indicate that LLMs encounter challenges, particularly with temporal concepts, handling out-of-distribution knowledge, and exhibiting deficiencies in logical reasoning capabilities. The outcomes underscore the efficacy of logic-based test cases generated by our tool in both triggering and identifying hallucinations. These findings underscore the imperative for ongoing collaborative endeavors within the community to detect and address LLM hallucinations.
Related papers
- FG-PRM: Fine-grained Hallucination Detection and Mitigation in Language Model Mathematical Reasoning [10.709365940160685]
Existing approaches primarily detect the presence of hallucinations but lack a nuanced understanding of their types and manifestations.
We introduce a comprehensive taxonomy that categorizes the common hallucinations in mathematical reasoning task into six types.
We then propose FG-PRM, an augmented model designed to detect and mitigate hallucinations in a fine-grained, step-level manner.
arXiv Detail & Related papers (2024-10-08T19:25:26Z) - Mitigating Entity-Level Hallucination in Large Language Models [11.872916697604278]
This paper proposes Dynamic Retrieval Augmentation based on hallucination Detection (DRAD) as a novel method to detect and mitigate hallucinations in Large Language Models (LLMs)
Experiment results show that DRAD demonstrates superior performance in both detecting and mitigating hallucinations in LLMs.
arXiv Detail & Related papers (2024-07-12T16:47:34Z) - Hallucination Detection: Robustly Discerning Reliable Answers in Large Language Models [70.19081534515371]
Large Language Models (LLMs) have gained widespread adoption in various natural language processing tasks.
They generate unfaithful or inconsistent content that deviates from the input source, leading to severe consequences.
We propose a robust discriminator named RelD to effectively detect hallucination in LLMs' generated answers.
arXiv Detail & Related papers (2024-07-04T18:47:42Z) - KnowHalu: Hallucination Detection via Multi-Form Knowledge Based Factual Checking [55.2155025063668]
KnowHalu is a novel approach for detecting hallucinations in text generated by large language models (LLMs)
It uses step-wise reasoning, multi-formulation query, multi-form knowledge for factual checking, and fusion-based detection mechanism.
Our evaluations demonstrate that KnowHalu significantly outperforms SOTA baselines in detecting hallucinations across diverse tasks.
arXiv Detail & Related papers (2024-04-03T02:52:07Z) - Enhancing Uncertainty-Based Hallucination Detection with Stronger Focus [99.33091772494751]
Large Language Models (LLMs) have gained significant popularity for their impressive performance across diverse fields.
LLMs are prone to hallucinate untruthful or nonsensical outputs that fail to meet user expectations.
We propose a novel reference-free, uncertainty-based method for detecting hallucinations in LLMs.
arXiv Detail & Related papers (2023-11-22T08:39:17Z) - FactCHD: Benchmarking Fact-Conflicting Hallucination Detection [64.4610684475899]
FactCHD is a benchmark designed for the detection of fact-conflicting hallucinations from LLMs.
FactCHD features a diverse dataset that spans various factuality patterns, including vanilla, multi-hop, comparison, and set operation.
We introduce Truth-Triangulator that synthesizes reflective considerations by tool-enhanced ChatGPT and LoRA-tuning based on Llama2.
arXiv Detail & Related papers (2023-10-18T16:27:49Z) - A New Benchmark and Reverse Validation Method for Passage-level
Hallucination Detection [63.56136319976554]
Large Language Models (LLMs) generate hallucinations, which can cause significant damage when deployed for mission-critical tasks.
We propose a self-check approach based on reverse validation to detect factual errors automatically in a zero-resource fashion.
We empirically evaluate our method and existing zero-resource detection methods on two datasets.
arXiv Detail & Related papers (2023-10-10T10:14:59Z) - Siren's Song in the AI Ocean: A Survey on Hallucination in Large
Language Models [116.01843550398183]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks.
LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge.
arXiv Detail & Related papers (2023-09-03T16:56:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.