論文の概要: Architectural Implications of GNN Aggregation Programming Abstractions
- arxiv url: http://arxiv.org/abs/2310.12184v2
- Date: Sat, 21 Oct 2023 00:30:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 06:01:41.150533
- Title: Architectural Implications of GNN Aggregation Programming Abstractions
- Title(参考訳): GNN集約プログラミング抽象化のアーキテクチャ的意味
- Authors: Yingjie Qi, Jianlei Yang, Ao Zhou, Tong Qiao and Chunming Hu
- Abstract要約: 我々は,GNNアグリゲーションのための既存のプログラミング抽象化を,データ構造と伝搬法の次元によって分類する。
これらの抽象化を最先端のGNNライブラリ上に構築することにより、その性能と効率を比較するために、網羅的で詳細な評価研究を行う。
- 参考スコア(独自算出の注目度): 12.021281020608326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have gained significant popularity due to the
powerful capability to extract useful representations from graph data. As the
need for efficient GNN computation intensifies, a variety of programming
abstractions designed for optimizing GNN Aggregation have emerged to facilitate
acceleration. However, there is no comprehensive evaluation and analysis upon
existing abstractions, thus no clear consensus on which approach is better. In
this letter, we classify existing programming abstractions for GNN Aggregation
by the dimension of data organization and propagation method. By constructing
these abstractions on a state-of-the-art GNN library, we perform a thorough and
detailed characterization study to compare their performance and efficiency,
and provide several insights on future GNN acceleration based on our analysis.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフデータから有用な表現を抽出する強力な能力のために、大きな人気を集めている。
効率的なGNN計算の必要性が増すにつれ、GNNアグリゲーションを最適化するために設計された様々なプログラミング抽象化が登場し、加速が促進された。
しかしながら、既存の抽象化に関する包括的な評価や分析は存在しないため、どのアプローチがよいかを明確に合意することはできません。
本稿では,gnnアグリゲーションのための既存のプログラミング抽象化を,データ構造と伝播方法の次元で分類する。
これらの抽象化を最先端のGNNライブラリ上に構築することにより、その性能と効率を詳細に比較し、分析に基づく今後のGNN加速に関する洞察を提供する。
関連論文リスト
- DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - MAG-GNN: Reinforcement Learning Boosted Graph Neural Network [68.60884768323739]
特定の研究の行は、GNNの表現性を向上させるためにサブグラフ情報を使用するサブグラフGNNを提案し、大きな成功を収めた。
このような効果は、すべての可能な部分グラフを列挙することによって、GNNの効率を犠牲にする。
本稿では,強化学習(RL)により強化されたGNNである磁気グラフニューラルネットワーク(MAG-GNN)を提案する。
論文 参考訳(メタデータ) (2023-10-29T20:32:21Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - GNN-Ensemble: Towards Random Decision Graph Neural Networks [3.7620848582312405]
グラフニューラルネットワーク(GNN)は、グラフ構造化データに広く応用されている。
GNNは、大量のテストデータに基づいて推論を行うために、限られた量のトレーニングデータから潜伏パターンを学習する必要がある。
本稿では、GNNのアンサンブル学習を一歩前進させ、精度、堅牢性、敵攻撃を改善した。
論文 参考訳(メタデータ) (2023-03-20T18:24:01Z) - Characterizing the Efficiency of Graph Neural Network Frameworks with a
Magnifying Glass [10.839902229218577]
グラフニューラルネットワーク(GNN)は、さまざまなグラフ関連学習タスクの成功により、大きな注目を集めている。
近年のGNNは,大規模グラフ上でのGNNのミニバッチトレーニングのために,異なるグラフサンプリング手法を用いて開発されている。
グリーンコンピューティングの観点から、フレームワークがどの程度"エコフレンドリー"であるかは不明だ。
論文 参考訳(メタデータ) (2022-11-06T04:22:19Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
グラフニューラルネットワーク(GNN)の大規模グラフトレーニングは、非常に難しい問題である
本稿では,既存の問題に対処するため,EnGCNという新たなアンサンブルトレーニング手法を提案する。
提案手法は,大規模データセット上でのSOTA(State-of-the-art)の性能向上を実現している。
論文 参考訳(メタデータ) (2022-10-14T03:43:05Z) - Efficient and effective training of language and graph neural network
models [36.00479096375565]
我々は,大規模言語モデルとグラフニューラルネットワークを協調的に学習する,効率的な言語モデルGNN(LM-GNN)を提案する。
本フレームワークの有効性は、BERTモデルの段階的微調整をまず異種グラフ情報に適用し、次にGNNモデルを用いて達成する。
我々は,LM-GNNフレームワークを異なるデータセットの性能で評価し,提案手法の有効性を示す。
論文 参考訳(メタデータ) (2022-06-22T00:23:37Z) - Training Sensitivity in Graph Isomorphism Network [2.487445341407889]
グラフニューラルネットワーク(GNN)は、グラフの低次元表現を学習するための一般的なツールである。
本稿では,多様なベンチマークデータセットを用いて,各モジュールの様々な代替機能について検討する。
論文 参考訳(メタデータ) (2020-08-19T03:50:28Z) - Fast Learning of Graph Neural Networks with Guaranteed Generalizability:
One-hidden-layer Case [93.37576644429578]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから実際に学習する上で、近年大きな進歩を遂げている。
回帰問題と二項分類問題の両方に隠れ層を持つGNNの理論的に基底的な一般化可能性解析を行う。
論文 参考訳(メタデータ) (2020-06-25T00:45:52Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。