Quantum digital cooling
- URL: http://arxiv.org/abs/1909.10538v3
- Date: Tue, 11 Apr 2023 13:34:50 GMT
- Title: Quantum digital cooling
- Authors: Stefano Polla, Yaroslav Herasymenko, and Thomas E. O'Brien
- Abstract summary: We introduce a method for digital preparation of ground states of simulated Hamiltonians inspired by cooling in nature.
The cold bath is simulated by a single ancillary qubit, which is reset periodically and coupled to the system non-perturbatively.
We optimize two cooling protocols based on weak-coupling and strong-coupling approaches.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a method for digital preparation of ground states of simulated
Hamiltonians, inspired by cooling in nature and adapted to leverage the
capabilities of digital quantum hardware. The cold bath is simulated by a
single ancillary qubit, which is reset periodically and coupled to the system
non-perturbatively. Studying this cooling method on a 1-qubit system toy model,
we optimize two cooling protocols based on weak-coupling and strong-coupling
approaches. Extending the insight from the 1-qubit system model, we develop two
scalable protocols for larger systems. The LogSweep protocol extends the
weak-coupling approach by sweeping energies to resonantly match any targeted
transition. We test LogSweep on the 1D tranverse-field Ising model,
demonstrating approximate ground state preparation with an error that can be
made polynomially small in the computation time for all three phases of the
system. The BangBang protocol extends the strong-coupling approach, and
exploits a heuristics for local Hamiltonians to maximise the probability of
de-exciting system transitions in the shortest possible time. Although this
protocol does not promise long-time convergence, it allows for a rapid cooling
to an approximation of the ground state, making this protocol appealing for
near-term demonstrations.
Related papers
- Shortcuts to adiabaticity in harmonic traps: a quantum-classical analog [0.10713888959520208]
We present a new technique for efficiently transitioning a quantum system from an initial to a final stationary state.
Our approach makes use of Nelson's quantization, which represents the quantum system as a classical Brownian process.
arXiv Detail & Related papers (2024-05-03T09:19:24Z) - Provably Time-Optimal Cooling of Markovian Quantum Systems [0.0]
We address the problem of cooling a Markovian quantum system to a pure state in the shortest amount of time possible.
We derive explicit provably time-optimal cooling protocols for rank one qubit systems, inverted $Lambda$-systems on a qutrit, and a certain system consisting of two coupled qubits.
arXiv Detail & Related papers (2024-03-08T13:07:33Z) - A spectrum-based shortcut method for topological systems [2.7173827294605775]
We develop a protocol for constructing shortcuts to adiabaticity through the multi-state Landau-Zener approach.
Our protocol has broad applicability to theoretical models and does not require increasing the difficulty of the experiment.
arXiv Detail & Related papers (2023-12-14T13:27:11Z) - Fixing detailed balance in ancilla-based dissipative state engineering [0.5126361628588283]
Dissipative state engineering is a term for a protocol which prepares the ground state of a Hamiltonian using engineered dissipation or engineered environments.
We argue that this approach has an intrinsic limitation because the ancillas, seen as an effective bath by the system in the weak-coupling limit, do not give the detailed balance expected for a true zero-temperature environment.
We explore overcoming this limitation using a recently developed technique from open-quantum-systems called pseudomodes.
arXiv Detail & Related papers (2023-10-19T07:43:23Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Programmable adiabatic demagnetization for systems with trivial and topological excitations [0.0]
We propose a protocol to prepare a low-energy state of an arbitrary Hamiltonian on a quantum computer or quantum simulator.
The protocol is inspired by the adiabatic demagnetization technique, used to cool solid-state systems to extremely low temperatures.
arXiv Detail & Related papers (2022-10-31T12:27:04Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.