論文の概要: Knowledge-Augmented Language Model Verification
- arxiv url: http://arxiv.org/abs/2310.12836v1
- Date: Thu, 19 Oct 2023 15:40:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-20 14:35:27.456483
- Title: Knowledge-Augmented Language Model Verification
- Title(参考訳): 知識強化型言語モデル検証
- Authors: Jinheon Baek, Soyeong Jeong, Minki Kang, Jong C. Park, Sung Ju Hwang
- Abstract要約: 最近の言語モデル(LM)は、パラメータに内在化された知識を持つテキストを生成する際、印象的な能力を示している。
本稿では,知識付加型LMの出力と知識を別個の検証器で検証することを提案する。
その結果,提案した検証器は,検索と生成の誤りを効果的に識別し,LMがより現実的に正しい出力を提供できることを示した。
- 参考スコア(独自算出の注目度): 68.6099592486075
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent Language Models (LMs) have shown impressive capabilities in generating
texts with the knowledge internalized in parameters. Yet, LMs often generate
the factually incorrect responses to the given queries, since their knowledge
may be inaccurate, incomplete, and outdated. To address this problem, previous
works propose to augment LMs with the knowledge retrieved from an external
knowledge source. However, such approaches often show suboptimal text
generation performance due to two reasons: 1) the model may fail to retrieve
the knowledge relevant to the given query, or 2) the model may not faithfully
reflect the retrieved knowledge in the generated text. To overcome these, we
propose to verify the output and the knowledge of the knowledge-augmented LMs
with a separate verifier, which is a small LM that is trained to detect those
two types of errors through instruction-finetuning. Then, when the verifier
recognizes an error, we can rectify it by either retrieving new knowledge or
generating new text. Further, we use an ensemble of the outputs from different
instructions with a single verifier to enhance the reliability of the
verification processes. We validate the effectiveness of the proposed
verification steps on multiple question answering benchmarks, whose results
show that the proposed verifier effectively identifies retrieval and generation
errors, allowing LMs to provide more factually correct outputs. Our code is
available at https://github.com/JinheonBaek/KALMV.
- Abstract(参考訳): 最近の言語モデル (lms) は、パラメータに内在した知識を持つテキストを生成する素晴らしい能力を示している。
しかし、LMは、その知識が不正確で不完全であり、時代遅れである可能性があるため、与えられたクエリに対する事実的に誤った応答を生成することが多い。
この問題に対処するため、従来の研究では、外部知識ソースから取得した知識を用いてLMを強化することを提案した。
しかし、このようなアプローチは2つの理由から、最適テキスト生成性能を示すことが多い。
1) モデルは,所定のクエリに関する知識の取得に失敗する可能性がある。
2) モデルは,生成されたテキストから得られた知識を忠実に反映するものではない。
そこで本研究では,これらの2種類の誤りを命令ファインタニングによって検出する訓練を施した,別個の検証器による知識付加型LMの出力と知識の検証を提案する。
そして、検証者がエラーを認識すると、新しい知識を検索するか、新しいテキストを生成することで修正できる。
さらに,検証プロセスの信頼性を高めるために,異なる命令からの出力を単一の検証器でアンサンブルする。
提案手法の有効性を複数の質問応答ベンチマークで検証し,提案手法の有効性を検証した結果,提案手法は検索と生成の誤りを効果的に識別し,LMがより現実的に正しい出力を提供できることを示した。
私たちのコードはhttps://github.com/JinheonBaek/KALMV.comから入手可能です。
関連論文リスト
- Retrieving, Rethinking and Revising: The Chain-of-Verification Can Improve Retrieval Augmented Generation [38.80878966092216]
大規模言語モデル(LLM)の強化を目的とした最近の検索拡張生成(RAG)
本稿では,外部検索の正しさと内部生成の整合性を高めるためのチェーン・オブ・バリフィケーション(CoV-RAG)を提案する。
論文 参考訳(メタデータ) (2024-10-08T08:34:54Z) - Evaluating the Reliability of Self-Explanations in Large Language Models [2.8894038270224867]
このような自己説明の2つのタイプ – 抽出的, 対実的 – を評価した。
以上の結果から,これらの自己説明は人間の判断と相関するが,モデルの決定過程を完全に的確に従わないことが明らかとなった。
このギャップを橋渡しできるのは, 反実的な説明をLCMに促すことによって, 忠実で, 情報的で, 容易に検証できる結果が得られるからである。
論文 参考訳(メタデータ) (2024-07-19T17:41:08Z) - CaLM: Contrasting Large and Small Language Models to Verify Grounded Generation [76.31621715032558]
グラウンデッドジェネレーションは、言語モデル(LM)に、より信頼性が高く説明可能な応答を生成する能力を持たせることを目的としている。
本稿では,新しい検証フレームワークであるCaLMを紹介する。
我々のフレームワークは、より少ないパラメトリックメモリに依存する小さなLMを有効活用し、より大きなLMの出力を検証する。
論文 参考訳(メタデータ) (2024-06-08T06:04:55Z) - Detecting Edited Knowledge in Language Models [5.260519479124422]
知識編集手法(KEs)は、事前学習から学んだ言語モデルの古いまたは不正確な知識を更新することができる。
生成されたアウトプットが編集された知識に基づいているか、あるいは事前学習からのファーストハンド知識に基づいているかを知ることは、生成モデルに対するユーザの信頼を高めることができる。
本稿では,言語モデルにおける編集された知識を検出する新しい課題を提案する。
論文 参考訳(メタデータ) (2024-05-04T22:02:24Z) - Robust and Scalable Model Editing for Large Language Models [75.95623066605259]
LLM編集のスケーラビリティと堅牢性を向上させるため,EREN(Reading Notesによる編集モデル)を提案する。
既存の技術とは異なり、複数の編集から知識を統合することができ、構文的に類似しているが意味的に無関係な入力に正しく反応する。
論文 参考訳(メタデータ) (2024-03-26T06:57:23Z) - GenAudit: Fixing Factual Errors in Language Model Outputs with Evidence [64.95492752484171]
GenAudit - 文書基底タスクの事実チェック LLM 応答を支援するためのツール。
これらのタスクを実行するためにモデルをトレーニングし、ユーザに対して推奨の編集とエビデンスを示すインタラクティブインターフェースを設計します。
システムによってほとんどのエラーがフラグ付けされていることを保証するため,精度への影響を最小限に抑えつつエラーリコールを増大させる手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T21:45:55Z) - R-Tuning: Instructing Large Language Models to Say `I Don't Know' [66.11375475253007]
大きな言語モデル(LLM)は、優れたパフォーマンスで多くのドメインに革命をもたらしたが、それでもその課題に直面している。
事前の指導チューニング方法は、モデルが知識を知っているかどうかに関わらず、モデルに文章を完成させるよう強制する。
我々はRefusal-Aware Instruction Tuning (R-Tuning)と呼ばれる新しいアプローチを提案する。
実験の結果、R-Tuningは、既知の質問に答えたり、未知の質問に答えるのを控えるモデルの能力を効果的に改善することを示した。
論文 参考訳(メタデータ) (2023-11-16T08:45:44Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
大きな言語モデル(LLM)は印象的な生成能力を示すが、内部知識に依存すると幻覚に悩まされる。
検索拡張LDMは、外部知識においてLLMを基盤とする潜在的な解決策として出現している。
論文 参考訳(メタデータ) (2023-10-31T04:37:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。