Improved Pairwise Measurement-Based Surface Code
- URL: http://arxiv.org/abs/2310.12981v2
- Date: Tue, 23 Jul 2024 23:49:56 GMT
- Title: Improved Pairwise Measurement-Based Surface Code
- Authors: Linnea Grans-Samuelsson, Ryan V. Mishmash, David Aasen, Christina Knapp, Bela Bauer, Brad Lackey, Marcus P. da Silva, Parsa Bonderson,
- Abstract summary: We devise a new realization of the surface code on a rectangular lattice of qubits utilizing single-qubit and nearest-neighbor two-qubit Pauli measurements.
This realization gains substantial advantages over prior pairwise measurement-based realizations of the surface code.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We devise a new realization of the surface code on a rectangular lattice of qubits utilizing single-qubit and nearest-neighbor two-qubit Pauli measurements and three auxiliary qubits per plaquette. This realization gains substantial advantages over prior pairwise measurement-based realizations of the surface code. It has a short operation period of 4 steps and our performance analysis for a standard circuit noise model yields a high fault-tolerance threshold of approximately $0.66\% $. The syndrome extraction circuits avoid bidirectional hook errors, so we can achieve full code distance by choosing appropriate boundary conditions. We also construct variants of the syndrome extraction circuits that entirely prevent hook errors, at the cost of larger circuit depth. This achieves full distance regardless of boundary conditions, with only a modest decrease in the threshold. Furthermore, we propose an efficient strategy for dealing with dead components (qubits and measurements) in our surface code realization, which can be adopted more generally for other surface code realizations. This new surface code realization is highly optimized for Majorana-based hardware, accounting for constraints imposed by layouts and the implementation of measurements, making it competitive with the recently proposed Floquet codes.
Related papers
- Reducing Quantum Error Correction Overhead with Versatile Flag-Sharing Syndrome Extraction Circuits [5.770351255180495]
An efficient error syndrome extraction circuit should use fewer ancillary qubits, quantum gates, and measurements.
We propose to design parallel flagged syndrome extraction with shared flag qubits for quantum stabilizer codes.
arXiv Detail & Related papers (2024-06-30T06:35:48Z) - Robust shallow shadows [0.251657752676152]
We present a robust shadow estimation protocol for wide classes of shallow measurement circuits.
We show how to estimate this directly from experimental data using tensor-network tools.
Under the practical constraints of current and near-term noisy quantum devices, our method maximally realizes the potential of shadow estimation with global rotations.
arXiv Detail & Related papers (2024-05-09T18:00:09Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction [82.72686460985297]
We tackle the problem of estimating a Manhattan frame.
We derive two new 2-line solvers, one of which does not suffer from singularities affecting existing solvers.
We also design a new non-minimal method, running on an arbitrary number of lines, to boost the performance in local optimization.
arXiv Detail & Related papers (2023-08-21T13:03:25Z) - Erasure qubits: Overcoming the $T_1$ limit in superconducting circuits [105.54048699217668]
amplitude damping time, $T_phi$, has long stood as the major factor limiting quantum fidelity in superconducting circuits.
We propose a scheme for overcoming the conventional $T_phi$ limit on fidelity by designing qubits in a way that amplitude damping errors can be detected and converted into erasure errors.
arXiv Detail & Related papers (2022-08-10T17:39:21Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - A circuit-level protocol and analysis for twist-based lattice surgery [3.222802562733787]
Lattice surgery is a technique for performing fault-tolerant quantum computation in two dimensions.
We provide an explicit twist-based lattice surgery protocol and its requisite connectivity layout.
We also provide new stabilizer measurement circuits for measuring twist defects.
arXiv Detail & Related papers (2022-01-14T21:16:27Z) - A hardware-efficient leakage-reduction scheme for quantum error
correction with superconducting transmon qubits [1.6328866317851185]
Leakage outside of the qubit computational subspace poses a threatening challenge to quantum error correction (QEC)
We propose a scheme using two leakage-reduction units (LRUs) that mitigate these issues for a transmon-based surface code.
We show that this leads to a significant reduction of the logical error rate.
arXiv Detail & Related papers (2021-02-16T18:21:41Z) - The cost of universality: A comparative study of the overhead of state
distillation and code switching with color codes [63.62764375279861]
We compare two leading FT implementations of the T gate in 2D color codes under circuit noise.
We find a circuit noise threshold of 0.07(1)% for the T gate via code switching, almost an order of magnitude below that achievable by state distillation in the same setting.
arXiv Detail & Related papers (2021-01-06T19:00:01Z) - Optimization of the surface code design for Majorana-based qubits [2.309914459672557]
The surface code is a prominent topological error-correcting code exhibiting high fault-tolerance accuracy thresholds.
Here, we present error-correction schemes using $textitonly$ Pauli measurements on single qubits and on pairs of nearest-neighbor qubits.
arXiv Detail & Related papers (2020-07-01T08:01:07Z) - Cellular automaton decoders for topological quantum codes with noisy
measurements and beyond [68.8204255655161]
We propose an error correction procedure based on a cellular automaton, the sweep rule, which is applicable to a broad range of codes beyond topological quantum codes.
For simplicity, we focus on the three-dimensional (3D) toric code on the rhombic dodecahedral lattice with boundaries and prove that the resulting local decoder has a non-zero error threshold.
We find that this error correction procedure is remarkably robust against measurement errors and is also essentially insensitive to the details of the lattice and noise model.
arXiv Detail & Related papers (2020-04-15T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.