Reducing Quantum Error Correction Overhead with Versatile Flag-Sharing Syndrome Extraction Circuits
- URL: http://arxiv.org/abs/2407.00607v1
- Date: Sun, 30 Jun 2024 06:35:48 GMT
- Title: Reducing Quantum Error Correction Overhead with Versatile Flag-Sharing Syndrome Extraction Circuits
- Authors: Pei-Hao Liou, Ching-Yi Lai,
- Abstract summary: An efficient error syndrome extraction circuit should use fewer ancillary qubits, quantum gates, and measurements.
We propose to design parallel flagged syndrome extraction with shared flag qubits for quantum stabilizer codes.
- Score: 5.770351255180495
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given that quantum error correction processes are unreliable, an efficient error syndrome extraction circuit should use fewer ancillary qubits, quantum gates, and measurements, while maintaining low circuit depth, to minimizing the circuit area, roughly defined as the product of circuit depth and the number of physical qubits. We propose to design parallel flagged syndrome extraction with shared flag qubits for quantum stabilizer codes. Versatile parallelization techniques are employed to minimize the required circuit area, thereby improving the error threshold and overall performance. Specifically, all the measurement outcomes in multiple rounds of syndrome extraction are integrated into a lookup table decoder, allowing us to parallelize multiple stabilizer measurements with shared flag qubits. We present flag-sharing and fully parallel schemes for the [[17,1,5]] and [[19,1,5]] Calderbank-Shor-Steane (CSS) codes. This methodology extends to the [[5,1,3]] non-CSS code, achieving the minimum known circuit area. Numerical simulations have demonstrated improved pseudothresholds for these codes by up to an order of magnitude compared to previous schemes in the literature.
Related papers
- Multi-qubit Lattice Surgery Scheduling [3.7126786554865774]
A quantum circuit can be transpiled into a sequence of solely non-Clifford multi-qubit gates.
We show that the transpilation significantly reduces the circuit length on the set of circuits tested.
The resulting circuit of multi-qubit gates has a further reduction in the expected circuit execution time compared to serial execution.
arXiv Detail & Related papers (2024-05-27T22:41:41Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Improved Pairwise Measurement-Based Surface Code [0.0]
We devise a new realization of the surface code on a rectangular lattice of qubits utilizing single-qubit and nearest-neighbor two-qubit Pauli measurements.
This realization gains substantial advantages over prior pairwise measurement-based realizations of the surface code.
arXiv Detail & Related papers (2023-10-19T17:59:55Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Circuit Cutting with Non-Maximally Entangled States [59.11160990637615]
Distributed quantum computing combines the computational power of multiple devices to overcome the limitations of individual devices.
circuit cutting techniques enable the distribution of quantum computations through classical communication.
Quantum teleportation allows the distribution of quantum computations without an exponential increase in shots.
We propose a novel circuit cutting technique that leverages non-maximally entangled qubit pairs.
arXiv Detail & Related papers (2023-06-21T08:03:34Z) - Quantum computation on a 19-qubit wide 2d nearest neighbour qubit array [59.24209911146749]
This paper explores the relationship between the width of a qubit lattice constrained in one dimension and physical thresholds.
We engineer an error bias at the lowest level of encoding using the surface code.
We then address this bias at a higher level of encoding using a lattice-surgery surface code bus.
arXiv Detail & Related papers (2022-12-03T06:16:07Z) - Parallel syndrome extraction with shared flag qubits for CSS codes of
distance three [3.1219977244201056]
It is possible to measure multiple stabilizers in parallel with at most one shared flag qubit for certain small quantum codes.
We propose a procedure for general CSS codes of distance three so that multiple $Z$-stabilizers ($X$-stabilizers) can be fault-tolerantly measured in parallel with one shared flag qubit.
arXiv Detail & Related papers (2022-08-01T03:06:54Z) - Realizing a class of stabilizer quantum error correction codes using a
single ancilla and circular connectivity [0.0]
We show that a class of "neighboring-blocks" stabilizer quantum error correction codes can be implemented in a resource-efficient manner using a single ancilla and circular near-neighbor qubit connectivity.
We propose an implementation for syndrome-measurement circuits for codes from the class and illustrate its workings for cases of three-, five-, and nine-qubits stabilizer code schemes.
arXiv Detail & Related papers (2022-07-27T08:25:38Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Optimal qubit assignment and routing via integer programming [0.22940141855172028]
We consider the problem of mapping a logical quantum circuit onto a given hardware with limited two-qubit connectivity.
We model this problem as an integer linear program, using a network flow formulation with binary variables.
We consider several cost functions: an approximation of the fidelity of the circuit, its total depth, and a measure of cross-talk.
arXiv Detail & Related papers (2021-06-11T15:02:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.