論文の概要: Document-Level Relation Extraction with Relation Correlation Enhancement
- arxiv url: http://arxiv.org/abs/2310.13000v1
- Date: Fri, 6 Oct 2023 10:59:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-29 16:23:52.307762
- Title: Document-Level Relation Extraction with Relation Correlation Enhancement
- Title(参考訳): 関係相関強化による文書レベル関係抽出
- Authors: Yusheng Huang, Zhouhan Lin
- Abstract要約: ドキュメントレベルの関係抽出(DocRE)は、ドキュメント内のエンティティ間の関係を識別することに焦点を当てたタスクである。
既存のDocREモデルは、しばしば関係関係の相関を見落とし、関係関係の定量的分析を欠いている。
本稿では,関係間の相互依存を明示的に活用することを目的とした関係グラフ手法を提案する。
- 参考スコア(独自算出の注目度): 10.684005956288347
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Document-level relation extraction (DocRE) is a task that focuses on
identifying relations between entities within a document. However, existing
DocRE models often overlook the correlation between relations and lack a
quantitative analysis of relation correlations. To address this limitation and
effectively capture relation correlations in DocRE, we propose a relation graph
method, which aims to explicitly exploit the interdependency among relations.
Firstly, we construct a relation graph that models relation correlations using
statistical co-occurrence information derived from prior relation knowledge.
Secondly, we employ a re-weighting scheme to create an effective relation
correlation matrix to guide the propagation of relation information.
Furthermore, we leverage graph attention networks to aggregate relation
embeddings. Importantly, our method can be seamlessly integrated as a
plug-and-play module into existing models. Experimental results demonstrate
that our approach can enhance the performance of multi-relation extraction,
highlighting the effectiveness of considering relation correlations in DocRE.
- Abstract(参考訳): ドキュメントレベルの関係抽出(DocRE)は、ドキュメント内のエンティティ間の関係を識別することに焦点を当てたタスクである。
しかし、既存のドクレモデルはしばしば関係の相関を見落とし、相関関係の定量的解析を欠いている。
この制限に対処し、DocREの相関関係を効果的に捉えるために、関係間の相互依存を明示的に活用することを目的とした関係グラフ法を提案する。
まず,先行関係知識から得られた統計的共起情報を用いて関係関係をモデル化する関係グラフを構築する。
第二に,関係情報の伝播を導くための効果的な関係相関行列を作成するために,再重み付け方式を採用する。
さらに,グラフアテンションネットワークを利用して関係埋め込みを集約する。
重要なのは、既存のモデルにプラグイン・アンド・プレイモジュールとしてシームレスに統合できることです。
実験結果から,本手法はマルチリレーション抽出の性能を向上し,DocREにおける相関関係の考察の有効性を強調した。
関連論文リスト
- Learning Complete Topology-Aware Correlations Between Relations for Inductive Link Prediction [121.65152276851619]
関係性間の意味的相関は本質的にエッジレベルとエンティティ非依存であることを示す。
本研究では,関係関係のトポロジ・アウェア・コレレーションをモデル化するための新しいサブグラフベース手法,TACOを提案する。
RCNのポテンシャルをさらに活用するために, 完全コモンニアインダストリアルサブグラフを提案する。
論文 参考訳(メタデータ) (2023-09-20T08:11:58Z) - Document-level Relation Extraction with Relation Correlations [15.997345900917058]
文書レベルの関係抽出は,長期問題と複数ラベル問題という,見落とされた2つの課題に直面している。
関係の共起相関を解析し,DocREタスクに初めて導入する。
論文 参考訳(メタデータ) (2022-12-20T11:17:52Z) - Improving Long Tailed Document-Level Relation Extraction via Easy
Relation Augmentation and Contrastive Learning [66.83982926437547]
我々は,DocREが現実のシナリオにおいて,長期分布問題の緩和に不可欠であると主張する。
長期分布問題に動機付けられ,DocREを改善するための簡易関係拡張法(ERA)を提案する。
論文 参考訳(メタデータ) (2022-05-21T06:15:11Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z) - D-REX: Dialogue Relation Extraction with Explanations [65.3862263565638]
この研究は、部分的にラベル付けされたデータのみを使用しながら関係が存在することを示す説明を抽出することに焦点を当てている。
本稿では,政策誘導型半教師付きアルゴリズムD-REXを提案する。
約90%の人は、強いBERTに基づく関節関係抽出と説明モデルよりもD-REXの説明を好んでいる。
論文 参考訳(メタデータ) (2021-09-10T22:30:48Z) - Topology-Aware Correlations Between Relations for Inductive Link
Prediction in Knowledge Graphs [41.38172189254483]
TACTは、2つの関係間の意味的相関がそれらのトポロジカルナレッジグラフと非常に相関しているという観測に触発される。
関係対を複数のトポロジ的パターンに分類し、相関ネットワーク(RCN)の構造を提案し、帰納的リンク予測における異なるパターンの重要性を学習する。
実験では、TACTが関係間のセマンティック相関を効果的にモデル化し、ベンチマークデータセット上の既存の最先端の方法を大幅に上回ることが示されています。
論文 参考訳(メタデータ) (2021-03-05T13:00:10Z) - Document-Level Relation Extraction with Reconstruction [28.593318203728963]
文書レベルの関係抽出(DocRE)のための新しいエンコーダ分類器再構成モデルを提案する。
再構築器は、グラフ表現からの基底経路依存性を再構築し、提案されたDocREモデルがトレーニングにおけるエンティティペアと関係をエンコードすることにもっと注意を払っていることを確認する。
大規模docreデータセットにおける実験結果から,提案モデルにより,グラフベースラインにおける関係抽出精度が大幅に向上することが示された。
論文 参考訳(メタデータ) (2020-12-21T14:29:31Z) - Learning to Decouple Relations: Few-Shot Relation Classification with
Entity-Guided Attention and Confusion-Aware Training [49.9995628166064]
本稿では,2つのメカニズムを備えたモデルであるCTEGを提案する。
一方、注意を誘導するEGA機構を導入し、混乱を引き起こす情報をフィルタリングする。
一方,コンフュージョン・アウェア・トレーニング(CAT)法は,関係の識別を明示的に学習するために提案されている。
論文 参考訳(メタデータ) (2020-10-21T11:07:53Z) - Improving Long-Tail Relation Extraction with Collaborating
Relation-Augmented Attention [63.26288066935098]
本稿では,ニューラルネットワーク,コラボレーティング・リレーショナル・アテンション(CoRA)を提案する。
一般的なベンチマークデータセットNYTの実験では、提案されたCoRAは、最先端のパフォーマンスを大きなマージンで改善する。
論文 参考訳(メタデータ) (2020-10-08T05:34:43Z) - Learning Relation Ties with a Force-Directed Graph in Distant Supervised
Relation Extraction [39.73191604776768]
関係関係は、異なる関係間の相関関係と相互排除として定義されるが、遠方の教師付き関係抽出には重要である。
既存のアプローチは、局所的な依存関係を丁寧に学習することで、この特性をモデル化する。
本稿では,関係関係を包括的に学習する,力によるグラフに基づく関係抽出モデルを提案する。
論文 参考訳(メタデータ) (2020-04-21T14:41:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。