論文の概要: DavIR: Data Selection via Implicit Reward for Large Language Models
- arxiv url: http://arxiv.org/abs/2310.13008v2
- Date: Thu, 19 Dec 2024 02:54:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 18:44:15.608374
- Title: DavIR: Data Selection via Implicit Reward for Large Language Models
- Title(参考訳): DavIR:大規模言語モデルのためのインプシット・リワードによるデータ選択
- Authors: Haotian Zhou, Tingkai Liu, Qianli Ma, Yufeng Zhang, Jianbo Yuan, Pengfei Liu, Yang You, Hongxia Yang,
- Abstract要約: DavIRは、学習後の大規模言語モデルのためのモデルベースのデータ選択手法である。
DavIRで選択したAlpacaデータセットの6%は、LLaMAモデルとGemmaモデルの両方を操り、フル52Kデータセットでトレーニングされたモデルと比較すると、優れたパフォーマンスが得られる。
- 参考スコア(独自算出の注目度): 62.59514469369608
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce DavIR, a model-based data selection method for post-training Large Language Models. DavIR generalizes Reducible Holdout Loss to core-set selection problem of causal language modeling, and quantifies the learnability of a given datum with respect to a pre-trained LLM based on relative reduction in loss during fine-tuning, a metric we show to be closely related to the implicit reward model described in Direct Preference Optimization (DPO). We show that 6% of Alpaca dataset selected with DavIR can steer both the LLaMA and Gemma model family to produce superior performance compared to the same models trained on the full 52K dataset. We also show that Alpaca dataset compressed with DavIR can be combined with GSM8K dataset to effectively balance open-domain freeform QA and mathematical reasoning capabilities. Finally, we apply the DavIR objective to DPO and develop a normalized DavIR-DPO objective which improves alignment performance of Zephyr-7B-SFT model by 8% (relative) on AlpacaEval, compared against training on vanilla DPO objective.
- Abstract(参考訳): DavIRは,学習後の大規模言語モデルのためのモデルベースデータ選択手法である。
DavIRは、因果言語モデリングのコアセット選択問題に還元性ホールドアウト損失を一般化し、微調整中の損失の相対的減少に基づいて、与えられたダムの学習可能性を定量化し、直接選好最適化(DPO)で記述された暗黙の報酬モデルと密接に関連していることを示す。
DavIRで選択したAlpacaデータセットの6%は、LLaMAモデルとGemmaモデルの両方を操り、フル52Kデータセットでトレーニングされたモデルと比較すると、優れたパフォーマンスが得られる。
また、DavIRで圧縮されたAlpacaデータセットをGSM8Kデータセットと組み合わせることで、オープンドメイン自由形式QAと数学的推論能力を効果的にバランスできることを示す。
最後に、DavIR目標をDPOに適用し、Zephyr-7B-SFTモデルのAlpacaEvalでのアライメント性能を8%向上させる正規化DavIR-DPO目標を開発する。
関連論文リスト
- Multimodal Preference Data Synthetic Alignment with Reward Model [23.978820500281213]
本稿では,DPOトレーニングによる効果的なマルチモーダルアライメントのための人選好のプロキシとして,報酬モデルを用いて合成データを生成する新しいフレームワークを提案する。
実験結果から、生成モデルや報酬モデルのような選択された合成データの統合は、人手による注釈付きデータへの依存を効果的に軽減できることが示された。
論文 参考訳(メタデータ) (2024-12-23T09:29:40Z) - EACO: Enhancing Alignment in Multimodal LLMs via Critical Observation [58.546205554954454]
臨界観測(EACO)によるMLLMのアライメント向上を提案する。
EACOは、経済的に5k画像のみを使用して、MLLMを自己生成の選好データで整列する。
EACOは幻覚全体の65.6%をHalusionBenchで減らし、MME-Cognitionで21.8%改善する。
論文 参考訳(メタデータ) (2024-12-06T09:59:47Z) - Optimizing LLMs with Direct Preferences: A Data Efficiency Perspective [4.548047308860141]
本研究では,異なる種類の嗜好データがモデル性能に与える影響について検討する。
収集に費用がかかる大量の好みデータへの依存を減らすことを目的としている。
論文 参考訳(メタデータ) (2024-10-22T00:11:41Z) - Adaptive Data Optimization: Dynamic Sample Selection with Scaling Laws [59.03420759554073]
本稿では,オンライン手法でデータ分散を最適化するアルゴリズムであるAdaptive Data Optimization (ADO)を導入する。
ADOは外部の知識やプロキシモデル、モデル更新の変更を必要としない。
ADOは、ドメインごとのスケーリング法則を使用して、トレーニング中の各ドメインの学習ポテンシャルを推定し、データ混合を調整する。
論文 参考訳(メタデータ) (2024-10-15T17:47:44Z) - Data Selection via Optimal Control for Language Models [134.67665351539725]
本研究は,大規模コーパスから高品質な事前学習データを選択することにより,下流利用におけるLMの能力を向上させることを目的とする。
PMP条件を解くことで最適なデータ選択を近似するフレームワークであるPMPベースのデータ選択(PDS)を導入する。
PDSの利点は、スケーリング法則に従ってテスト損失曲線の外挿によって証明されたように、10Tトークンでトレーニングされた400Bモデルにまで拡張される。
論文 参考訳(メタデータ) (2024-10-09T17:06:57Z) - Mitigating Training Imbalance in LLM Fine-Tuning via Selective Parameter Merging [11.223074654129915]
大型言語モデル(LLM)を特定のタスクに適応させるためには、SFT(Supervised Fine-tuning)が不可欠である。
本稿では,SFTモデルとデータ順序の微調整を併用することにより,この不均衡を軽減することを提案する。
論文 参考訳(メタデータ) (2024-10-01T08:44:31Z) - Training on the Benchmark Is Not All You Need [52.01920740114261]
本稿では,複数選択肢の内容に基づいた簡易かつ効果的なデータ漏洩検出手法を提案する。
本手法は,モデルトレーニングデータや重みを使用せずに,ブラックボックス条件下で動作することができる。
我々は,4つのベンチマークデータセットを用いて,31個の主要なオープンソースLCMのデータ漏洩の程度を評価する。
論文 参考訳(メタデータ) (2024-09-03T11:09:44Z) - Optimizing V-information for Self-Supervised Pre-training Data-Effective Medical Foundation Models [15.413974936297082]
大規模データセット上での自己教師付き事前トレーニング医療基盤モデルは、例外的なパフォーマンスを示す。
基礎モデル事前学習のための貴重なサンプルを選択するために、データ効率のよい学習手法が導入された。
実世界の医療領域におけるV情報の最適化のための最適なデータ効率学習手法を開発した。
論文 参考訳(メタデータ) (2024-08-13T10:28:54Z) - Step-DPO: Step-wise Preference Optimization for Long-chain Reasoning of LLMs [54.05511925104712]
本稿では,Step-DPOと呼ばれるシンプルで効果的でデータ効率のよい手法を提案する。
Step-DPOは、個々の推論ステップを、論理的に回答を評価するのではなく、優先最適化の単位として扱う。
以上の結果から,70B パラメータ以上のモデルでは,10K の選好データペアと500 Step-DPO トレーニングステップ以下では,MATH の精度が約3%向上する可能性が示唆された。
論文 参考訳(メタデータ) (2024-06-26T17:43:06Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
既存のペアデータを必要としない、効果的でスケーラブルなトレーニングパラダイムである自己拡張型優先度最適化(SAPO)を導入する。
負の反応を自律的に生成するセルフプレイの概念に基づいて、我々はさらに、データ探索とエクスプロイトを強化するために、非政治的な学習パイプラインを組み込む。
論文 参考訳(メタデータ) (2024-05-31T14:21:04Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
本研究では, 分布域外領域を積極的に探索するために, 潜在的に高次応答に対して楽観的に偏りを呈する2段階的客観性を提案する。
実験の結果,Zephyr-7B-SFTとLlama-3-8B-Instructモデルで微調整した場合,SELM(Self-Exploring Language Models)は命令追従ベンチマークの性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-05-29T17:59:07Z) - Getting More Juice Out of the SFT Data: Reward Learning from Human Demonstration Improves SFT for LLM Alignment [65.15914284008973]
我々は、報酬モデルと政策モデルを同時に構築するために、逆強化学習(IRL)技術を活用することを提案する。
提案アルゴリズムはIRL問題の定常解に収束することを示す。
その結果,アライメントプロセス全体を通じて報酬学習を活用することは有益であることが示唆された。
論文 参考訳(メタデータ) (2024-05-28T07:11:05Z) - Smaug: Fixing Failure Modes of Preference Optimisation with DPO-Positive [15.066029556877721]
理論上、標準的なDPO損失は、モデルが好むサンプルの可能性を減少させる可能性があることを示す。
DPO-Positive (DPOP) は,この障害モードを回避する新しい損失関数とトレーニング手順である。
意外なことに、DPOPはさまざまなデータセットや下流タスクでDPOやその他の微調整手順より優れています。
論文 参考訳(メタデータ) (2024-02-20T18:42:34Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
本稿では,データの影響を推定し,命令データ選択のための低ランクグレーディエント類似度探索を行うアルゴリズムであるLESSを提案する。
LESS選択したデータの5%のトレーニングは、さまざまなダウンストリームタスクにわたる完全なデータセットでのトレーニングよりも優れています。
我々の方法は、意図した下流アプリケーションに必要な推論スキルを識別するために、表面的なフォームキューを超えています。
論文 参考訳(メタデータ) (2024-02-06T19:18:04Z) - SLoRA: Federated Parameter Efficient Fine-Tuning of Language Models [28.764782216513037]
FL(Federated Learning)は、FLエッジクライアントの分散データとプライベートデータの恩恵を受けることができる。
異種データシナリオにおけるLoRAの重要な制約を克服するSLoRAという手法を提案する。
実験の結果,SLoRAは完全微調整に匹敵する性能を示した。
論文 参考訳(メタデータ) (2023-08-12T10:33:57Z) - Scaling Relationship on Learning Mathematical Reasoning with Large
Language Models [75.29595679428105]
本研究では,事前学習損失,教師付きデータ量,拡張データ量が教師付きLDMの推論性能に与える影響について検討する。
複数のモデルからの拒絶サンプルは、LLaMA-7BをGSM8Kの49.3%の精度に押し上げ、監督された微調整(SFT)の精度を35.9%上回る結果となった。
論文 参考訳(メタデータ) (2023-08-03T15:34:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。