論文の概要: Compositional preference models for aligning LMs
- arxiv url: http://arxiv.org/abs/2310.13011v2
- Date: Thu, 14 Mar 2024 18:07:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 01:54:08.691926
- Title: Compositional preference models for aligning LMs
- Title(参考訳): LMの整列化のための構成選好モデル
- Authors: Dongyoung Go, Tomasz Korbak, Germán Kruszewski, Jos Rozen, Marc Dymetman,
- Abstract要約: 構成的選好モデル(CPM)は、一つのグローバルな選好評価をいくつかの解釈可能な特徴に分解するフレームワークである。
CPMは、選好データのどの特性を使って選好モデルを訓練するかを制御し、人間の選好判断を過小評価していると考えられる特徴に基づいて構築することができる。
- 参考スコア(独自算出の注目度): 15.036426712762147
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As language models (LMs) become more capable, it is increasingly important to align them with human preferences. However, the dominant paradigm for training Preference Models (PMs) for that purpose suffers from fundamental limitations, such as lack of transparency and scalability, along with susceptibility to overfitting the preference dataset. We propose Compositional Preference Models (CPMs), a novel PM framework that decomposes one global preference assessment into several interpretable features, obtains scalar scores for these features from a prompted LM, and aggregates these scores using a logistic regression classifier. Through these simple steps, CPMs allow to control which properties of the preference data are used to train the preference model and to build it based on features that are believed to underlie the human preference judgment. Our experiments show that CPMs not only improve generalization and are more robust to overoptimization than standard PMs, but also that best-of-n samples obtained using CPMs tend to be preferred over samples obtained using conventional PMs. Overall, our approach demonstrates the benefits of endowing PMs with priors about which features determine human preferences while relying on LM capabilities to extract those features in a scalable and robust way.
- Abstract(参考訳): 言語モデル(LM)がより有能になるにつれて、それらを人間の好みに合わせることがますます重要である。
しかし、その目的のために優先度モデル(PM)をトレーニングする主要なパラダイムは、透明性の欠如やスケーラビリティの欠如といった基本的な制限と、好みのデータセットを過度に適合させる可能性に悩まされている。
本稿では,1つのグローバルな選好評価をいくつかの解釈可能な特徴に分解する新しいPMフレームワークであるCPMを提案し,これらの特徴のスカラースコアを誘導されたLMから取得し,ロジスティック回帰分類器を用いてこれらのスコアを集約する。
これらの単純なステップを通じて、CPMは、選好データのどの特性を使用して選好モデルを訓練するかを制御し、人間の選好判断を過小評価していると思われる特徴に基づいて構築することができる。
実験の結果, CPM は一般の PM よりも一般化が向上し, 過最適化に強いだけでなく, 従来の PM よりも CPM を用いたベスト・オブ・n 標本の方が好まれることが示された。
全体として,提案手法は,ヒトの嗜好を決定する機能と,スケーラブルでロバストな方法でこれらの機能を抽出するLM機能に頼って,PMを先行する利点を示すものである。
関連論文リスト
- Hybrid Preferences: Learning to Route Instances for Human vs. AI Feedback [87.37721254914476]
アノテーションの品質向上のために,人間とLMの入力を組み合わせたルーティングフレームワークを提案する。
我々は、人間とLMアノテーションの任意の組み合わせで報酬モデルの性能を予測するために、性能予測モデルを訓練する。
選択したハイブリッド混合物は,一方のみ使用した場合と比較して,報奨モデルの性能が向上することを示す。
論文 参考訳(メタデータ) (2024-10-24T20:04:15Z) - RosePO: Aligning LLM-based Recommenders with Human Values [38.029251417802044]
我々は、パーソナライズされた選好最適化(RosePO)を円滑にするための一般的なフレームワークを提案する。
RosePOは、トレーニング後の段階において、カスタマイズされた人的価値との整合性が向上する。
実世界の3つのデータセットの評価は,本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-10-16T12:54:34Z) - General Preference Modeling with Preference Representations for Aligning Language Models [51.14207112118503]
我々は、複雑な嗜好構造を効率的に捉えるために、応答を潜在空間に埋め込んだ選好表現学習を導入する。
また、人間からのフィードバックから報酬に基づく強化学習を一般化する嗜好スコアに基づく一般選好最適化(GPO)を提案する。
提案手法は,基礎モデルの微妙な人的価値との整合性を高めることができる。
論文 参考訳(メタデータ) (2024-10-03T04:22:55Z) - Model-based Preference Optimization in Abstractive Summarization without Human Feedback [5.438770095369458]
人間のフィードバックを伴わずに要約能力を向上させるために,モデルベース推論最適化(MPO)を導入している。
標準要約データセットと各種測定値を用いた実験により,提案したMPOは,人間のフィードバックに頼らずに生成した要約の質を著しく向上することが示された。
論文 参考訳(メタデータ) (2024-09-27T10:35:45Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
本稿では,自己監督的選好度損失とアライメント損失を組み合わせた自己監督的選好度損失を構成する,新しい自己監督的選好最適化(SPO)フレームワークを提案する。
その結果,SPOを既存の好み最適化手法とシームレスに統合し,最先端性能を実現することができた。
論文 参考訳(メタデータ) (2024-09-26T12:37:26Z) - Preference Alignment Improves Language Model-Based TTS [76.70693823683091]
選好アライメントアルゴリズムは、報酬モデルの嗜好に合わせてLMを調整し、生成されたコンテンツの望ましさを高める。
1.15B のパラメータ LM に基づく TTS モデルを用いて、嗜好の整合性は常に知性、話者類似性、代用主観的評価スコアを向上することを示した。
論文 参考訳(メタデータ) (2024-09-19T01:58:19Z) - Fairer Preferences Elicit Improved Human-Aligned Large Language Model Judgments [41.25558612970942]
大規模言語モデル (LLMs) が優先バイアスを示し, 設計に敏感であることを示す。
この現象に触発された自動ゼロショット評価指向のプロンプト最適化フレームワークZEPOを提案する。
論文 参考訳(メタデータ) (2024-06-17T09:48:53Z) - Aligning Large Language Models with Self-generated Preference Data [72.99676237703099]
大規模言語モデル(LLM)と人間の嗜好との整合性を高める新しいフレームワークを提案する。
私たちのキーとなるアイデアは、小さな(種)データの中で人間の事前知識を活用することです。
本稿では,ノイズ認識型選好学習アルゴリズムを導入し,生成した選好データにおける品質低下のリスクを軽減する。
論文 参考訳(メタデータ) (2024-06-06T18:01:02Z) - Aligning Large Language Models via Fine-grained Supervision [20.35000061196631]
事前訓練された大規模言語モデル(LLM)は、一貫性のある記事を生成するのに優れていますが、そのアウトプットは非現実的、有毒、あるいはユーザの期待に沿わないかもしれません。
現在のアプローチは、モデルアライメントを改善するために、人間のフィードバックによる強化学習を使うことに重点を置いている。
トークンレベルの微粒化によるLCMアライメント向上手法を提案する。
論文 参考訳(メタデータ) (2024-06-04T20:21:45Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
複数の参照モデルを用いた直接選好最適化のための新しいクローズドフォームの定式化を提案する。
得られたアルゴリズムであるMulti-Reference Preference Optimization (MRPO)は、様々な参照モデルからより広範な事前知識を活用する。
MRPOを微調整したLLMは,データ不足や多量性に関わらず,様々な嗜好データにおいてより一般化されていることを示す。
論文 参考訳(メタデータ) (2024-05-26T00:29:04Z) - Dissecting Human and LLM Preferences [80.55271307662365]
人間は誤りに敏感ではなく、自分の姿勢を支持する反応を好んでおり、モデルが限界を認めている場合、明確な嫌悪を示します。
GPT-4-Turboのような先進的なLCMは、より正確さ、明快さ、無害さを強調している。
嗜好に基づく評価は意図的に操作可能であることを示す。
論文 参考訳(メタデータ) (2024-02-17T14:34:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。