Positive-Unlabeled Node Classification with Structure-aware Graph
Learning
- URL: http://arxiv.org/abs/2310.13538v1
- Date: Fri, 20 Oct 2023 14:32:54 GMT
- Title: Positive-Unlabeled Node Classification with Structure-aware Graph
Learning
- Authors: Hansi Yang, Yongqi Zhang, Quanming Yao, James Kwok
- Abstract summary: Existing works on positive-unlabeled (PU) node classification overlook information in the graph structure.
We propose a distance-aware PU loss that uses homophily in graphs to introduce more accurate supervision.
We also propose a regularizer to align the model with graph structure.
- Score: 40.476865943437055
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Node classification on graphs is an important research problem with many
applications. Real-world graph data sets may not be balanced and accurate as
assumed by most existing works. A challenging setting is positive-unlabeled
(PU) node classification, where labeled nodes are restricted to positive nodes.
It has diverse applications, e.g., pandemic prediction or network anomaly
detection. Existing works on PU node classification overlook information in the
graph structure, which can be critical. In this paper, we propose to better
utilize graph structure for PU node classification. We first propose a
distance-aware PU loss that uses homophily in graphs to introduce more accurate
supervision. We also propose a regularizer to align the model with graph
structure. Theoretical analysis shows that minimizing the proposed loss also
leads to minimizing the expected loss with both positive and negative labels.
Extensive empirical evaluation on diverse graph data sets demonstrates its
superior performance over existing state-of-the-art methods.
Related papers
- Learning on Graphs with Out-of-Distribution Nodes [33.141867473074264]
Graph Neural Networks (GNNs) are state-of-the-art models for performing prediction tasks on graphs.
This work defines the problem of graph learning with out-of-distribution nodes.
We propose Out-of-Distribution Graph Attention Network (OODGAT), a novel GNN model which explicitly models the interaction between different kinds of nodes.
arXiv Detail & Related papers (2023-08-13T08:10:23Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Rethinking Explaining Graph Neural Networks via Non-parametric Subgraph
Matching [68.35685422301613]
We propose a novel non-parametric subgraph matching framework, dubbed MatchExplainer, to explore explanatory subgraphs.
It couples the target graph with other counterpart instances and identifies the most crucial joint substructure by minimizing the node corresponding-based distance.
Experiments on synthetic and real-world datasets show the effectiveness of our MatchExplainer by outperforming all state-of-the-art parametric baselines with significant margins.
arXiv Detail & Related papers (2023-01-07T05:14:45Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Neighborhood Random Walk Graph Sampling for Regularized Bayesian Graph
Convolutional Neural Networks [0.6236890292833384]
In this paper, we propose a novel algorithm called Bayesian Graph Convolutional Network using Neighborhood Random Walk Sampling (BGCN-NRWS)
BGCN-NRWS uses a Markov Chain Monte Carlo (MCMC) based graph sampling algorithm utilizing graph structure, reduces overfitting by using a variational inference layer, and yields consistently competitive classification results compared to the state-of-the-art in semi-supervised node classification.
arXiv Detail & Related papers (2021-12-14T20:58:27Z) - Imbalanced Graph Classification via Graph-of-Graph Neural Networks [16.589373163769853]
Graph Neural Networks (GNNs) have achieved unprecedented success in learning graph representations to identify categorical labels of graphs.
We introduce a novel framework, Graph-of-Graph Neural Networks (G$2$GNN), which alleviates the graph imbalance issue by deriving extra supervision globally from neighboring graphs and locally from graphs themselves.
Our proposed G$2$GNN outperforms numerous baselines by roughly 5% in both F1-macro and F1-micro scores.
arXiv Detail & Related papers (2021-12-01T02:25:47Z) - Node Classification Meets Link Prediction on Knowledge Graphs [16.37145148171519]
We study the problems of transductive node classification over incomplete graphs and link prediction over graphs with node features.
Our model performs very strongly when compared to the respective state-of-the-art models for node classification and link prediction.
arXiv Detail & Related papers (2021-06-14T10:52:52Z) - Graph Classification by Mixture of Diverse Experts [67.33716357951235]
We present GraphDIVE, a framework leveraging mixture of diverse experts for imbalanced graph classification.
With a divide-and-conquer principle, GraphDIVE employs a gating network to partition an imbalanced graph dataset into several subsets.
Experiments on real-world imbalanced graph datasets demonstrate the effectiveness of GraphDIVE.
arXiv Detail & Related papers (2021-03-29T14:03:03Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Certified Robustness of Graph Classification against Topology Attack
with Randomized Smoothing [22.16111584447466]
Graph-based machine learning models are vulnerable to adversarial perturbations due to the non i.i.d nature of graph data.
We build a smoothed graph classification model with certified robustness guarantee.
We also evaluate the effectiveness of our approach under graph convolutional network (GCN) based multi-class graph classification model.
arXiv Detail & Related papers (2020-09-12T22:18:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.