論文の概要: Impact of Guidance and Interaction Strategies for LLM Use on Learner
Performance and Perception
- arxiv url: http://arxiv.org/abs/2310.13712v2
- Date: Tue, 23 Jan 2024 07:13:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-24 19:08:26.116470
- Title: Impact of Guidance and Interaction Strategies for LLM Use on Learner
Performance and Perception
- Title(参考訳): LLM使用指導とインタラクション方略が学習者パフォーマンスと知覚に及ぼす影響
- Authors: Harsh Kumar, Ilya Musabirov, Mohi Reza, Jiakai Shi, Xinyuan Wang,
Joseph Jay Williams, Anastasia Kuzminykh, Michael Liut
- Abstract要約: 大規模言語モデル(LLM)は、その教育的有用性を探求する研究の増加とともに、有望な道を提供する。
本研究は,LLM支援学習環境の形成において,教師が果たす役割を強調した。
- 参考スコア(独自算出の注目度): 20.167765961987662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Personalized chatbot-based teaching assistants can be crucial in addressing
increasing classroom sizes, especially where direct teacher presence is
limited. Large language models (LLMs) offer a promising avenue, with increasing
research exploring their educational utility. However, the challenge lies not
only in establishing the efficacy of LLMs but also in discerning the nuances of
interaction between learners and these models, which impact learners'
engagement and results. We conducted a formative study in an undergraduate
computer science classroom (N=145) and a controlled experiment on Prolific
(N=356) to explore the impact of four pedagogically informed guidance
strategies on the learners' performance, confidence and trust in LLMs. Direct
LLM answers marginally improved performance, while refining student solutions
fostered trust. Structured guidance reduced random queries as well as instances
of students copy-pasting assignment questions to the LLM. Our work highlights
the role that teachers can play in shaping LLM-supported learning environments.
- Abstract(参考訳): 個人化されたチャットボットベースの指導アシスタントは、特に直接教師の存在が限られている教室の大きさの増大に対処するために不可欠である。
大規模言語モデル(llm)は有望な道のりを提供し、教育の有用性を探求する研究が増えている。
しかし、この課題は、LLMの有効性を確立するだけでなく、学習者とこれらのモデル間の相互作用のニュアンスを認識し、学習者のエンゲージメントと結果に影響を与える。
大学生のコンピュータサイエンス教室(n=145)と多作性に関する制御実験(n=356)を行い,教育的指導戦略が学習者のパフォーマンス,自信,llmに対する信頼に与える影響について検討した。
直接LLMは性能を極端に改善し、学生ソリューションの精錬は信頼性を高めた。
構造化ガイダンスは、ランダムなクエリを減らし、学生がLLMに課題をコピー&ペーストする例も減らした。
本研究は,LLM支援学習環境の形成における教師の役割を強調した。
関連論文リスト
- Exploring Knowledge Tracing in Tutor-Student Dialogues [53.52699766206808]
本稿では,教師と学生の対話における知識追跡(KT)の最初の試みについて述べる。
そこで本研究では,対話の各ターンに係わる知識コンポーネントやスキルを同定する手法を提案する。
次に,得られたラベル付きデータに様々なKT手法を適用し,対話全体を通して学生の知識レベルを追跡する。
論文 参考訳(メタデータ) (2024-09-24T22:31:39Z) - AI Meets the Classroom: When Does ChatGPT Harm Learning? [0.0]
我々は,生成型AI,特に大規模言語モデル(LLM)がプログラミングクラスにおける学習に与える影響について検討する。
LLMの使用が学習結果に肯定的,否定的な影響を及ぼす可能性が3つの研究で示された。
論文 参考訳(メタデータ) (2024-08-29T17:07:46Z) - Dr.Academy: A Benchmark for Evaluating Questioning Capability in Education for Large Language Models [30.759154473275043]
本研究では,大規模言語モデル(LLM)の教師として教育における質問能力を評価するためのベンチマークを紹介する。
関連性, カバレッジ, 代表性, 一貫性の4つの指標を適用し, LLMのアウトプットの教育的品質を評価する。
以上の結果から, GPT-4は一般・人文・理科教育において有意な可能性を秘めていることが示唆された。
論文 参考訳(メタデータ) (2024-08-20T15:36:30Z) - I don't trust you (anymore)! -- The effect of students' LLM use on Lecturer-Student-Trust in Higher Education [0.0]
Open AIのChatGPTのようなプラットフォームにおける大規模言語モデル(LLM)は、大学生の間で急速に採用されている。
学生によるLLMの使用は、情報と手続きの正義にどのように影響し、チーム信頼と期待されるチームパフォーマンスに影響を与えるか?
本研究は,LLM使用の公平さよりも,学生利用の透明性に重点を置いていることを示唆する。
論文 参考訳(メタデータ) (2024-06-21T05:35:57Z) - Supporting Self-Reflection at Scale with Large Language Models: Insights from Randomized Field Experiments in Classrooms [7.550701021850185]
本研究では,大規模言語モデル (LLMs) が学生の反省会後リフレクションに役立てる可能性について検討する。
大学コンピュータサイエンス科でランダムフィールド実験を2回行った。
論文 参考訳(メタデータ) (2024-06-01T02:41:59Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
大規模言語モデルの自己改善のためのAlphaLLMを紹介する。
モンテカルロ木探索(MCTS)とLLMを統合し、自己改善ループを確立する。
実験の結果,AlphaLLM は付加アノテーションを使わずに LLM の性能を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-04-18T15:21:34Z) - Rethinking the Roles of Large Language Models in Chinese Grammatical
Error Correction [62.409807640887834]
中国語の文法的誤り訂正(CGEC)は、入力文中のすべての文法的誤りを修正することを目的としている。
CGECの修正器としてのLLMの性能は、課題の焦点が難しいため不満足なままである。
CGECタスクにおけるLCMの役割を再考し、CGECでよりよく活用し、探索できるようにした。
論文 参考訳(メタデータ) (2024-02-18T01:40:34Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
大規模言語モデル(LLM)の領域における機械学習の研究
このイニシアチブは、望ましくないデータの影響(機密情報や違法情報など)と関連するモデル機能を排除することを目的としている。
論文 参考訳(メタデータ) (2024-02-13T20:51:58Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z) - Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation [109.8527403904657]
大規模言語モデル(LLM)は,その知識に対する信頼度が低く,内部知識と外部知識の衝突をうまく扱えないことを示す。
検索の強化は、LLMの知識境界に対する認識を高める効果的なアプローチであることが証明されている。
本稿では,文書を動的に活用するための簡易な手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T16:46:10Z) - Learning from Mistakes via Cooperative Study Assistant for Large
Language Models [17.318591492264023]
大規模言語モデル(LLM)は、自身のフィードバックに基づいて、その世代を洗練させる可能性を実証している。
SALAM(Studio Assistant for Large Language Model)は,ミスから学習する上で,主要なLLMを支援するための補助エージェントを備えた新しいフレームワークである。
論文 参考訳(メタデータ) (2023-05-23T08:51:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。