Learning Hierarchical Interaction for Accurate Molecular Property Prediction
- URL: http://arxiv.org/abs/2504.20127v2
- Date: Wed, 30 Apr 2025 07:57:16 GMT
- Title: Learning Hierarchical Interaction for Accurate Molecular Property Prediction
- Authors: Huiyang Hong, Xinkai Wu, Hongyu Sun, Chaoyang Xie, Qi Wang, Yuquan Li,
- Abstract summary: We propose a Hierarchical Interaction Message Passing Mechanism, which serves as the foundation of our novel model, HimNet.<n>Our method enables interaction-aware representation learning across atomic, motif, and molecular levels via hierarchical attention-guided message passing.<n>Our method exhibits promising hierarchical interpretability, aligning well with chemical intuition on representative molecules.
- Score: 8.488251667425887
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Discovering molecules with desirable molecular properties, including ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) profiles, is of great importance in drug discovery. Existing approaches typically employ deep learning models, such as Graph Neural Networks (GNNs) and Transformers, to predict these molecular properties by learning from diverse chemical information. However, these models often fail to efficiently capture and utilize the hierarchical nature of molecular structures, and lack mechanisms for effective interaction among multi-level features. To address these limitations, we propose a Hierarchical Interaction Message Passing Mechanism, which serves as the foundation of our novel model, HimNet. Our method enables interaction-aware representation learning across atomic, motif, and molecular levels via hierarchical attention-guided message passing. This design allows HimNet to effectively balance global and local information, ensuring rich and task-relevant feature extraction for downstream property prediction tasks, such as Blood-Brain Barrier Permeability (BBBP). Extensive experiments on multiple benchmark datasets demonstrate that HimNet achieves the best or near-best performance in most molecular property prediction tasks. Furthermore, our method exhibits promising hierarchical interpretability, aligning well with chemical intuition on representative molecules. We believe that HimNet offers an accurate and efficient solution for molecular activity and ADMET property prediction, contributing significantly to advanced decision-making in the early stages of drug discovery.
Related papers
- FARM: Functional Group-Aware Representations for Small Molecules [55.281754551202326]
We introduce Functional Group-Aware Representations for Small Molecules (FARM)
FARM is a foundation model designed to bridge the gap between SMILES, natural language, and molecular graphs.
We rigorously evaluate FARM on the MoleculeNet dataset, where it achieves state-of-the-art performance on 10 out of 12 tasks.
arXiv Detail & Related papers (2024-10-02T23:04:58Z) - Data-Efficient Molecular Generation with Hierarchical Textual Inversion [48.816943690420224]
We introduce Hierarchical textual Inversion for Molecular generation (HI-Mol), a novel data-efficient molecular generation method.
HI-Mol is inspired by the importance of hierarchical information, e.g., both coarse- and fine-grained features, in understanding the molecule distribution.
Compared to the conventional textual inversion method in the image domain using a single-level token embedding, our multi-level token embeddings allow the model to effectively learn the underlying low-shot molecule distribution.
arXiv Detail & Related papers (2024-05-05T08:35:23Z) - Contrastive Dual-Interaction Graph Neural Network for Molecular Property Prediction [0.0]
We introduce DIG-Mol, a novel self-supervised graph neural network framework for molecular property prediction.
DIG-Mol integrates a momentum distillation network with two interconnected networks to efficiently improve molecular characterization.
We have established DIG-Mol's state-of-the-art performance through extensive experimental evaluation in a variety of molecular property prediction tasks.
arXiv Detail & Related papers (2024-05-04T10:09:27Z) - Active Causal Learning for Decoding Chemical Complexities with Targeted Interventions [0.0]
We introduce an active learning approach that discerns underlying cause-effect relationships through strategic sampling.
This method identifies the smallest subset of the dataset capable of encoding the most information representative of a much larger chemical space.
The identified causal relations are then leveraged to conduct systematic interventions, optimizing the design task within a chemical space that the models have not encountered previously.
arXiv Detail & Related papers (2024-04-05T17:15:48Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIG is a novel MultiModaL molecular pre-training framework for predicting molecular properties based on Image and Graph structures.
It amalgamates the strengths of both molecular representation forms.
It exhibits enhanced performance in downstream tasks pertaining to molecular property prediction within benchmark groups.
arXiv Detail & Related papers (2023-11-28T10:28:35Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
We introduce a new model for molecular representation learning called the Atomic and Subgraph-aware Bilateral Aggregation (ASBA)
ASBA addresses the limitations of previous atom-wise and subgraph-wise models by incorporating both types of information.
Our method offers a more comprehensive way to learn representations for molecular property prediction and has broad potential in drug and material discovery applications.
arXiv Detail & Related papers (2023-05-22T00:56:00Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - Flexible dual-branched message passing neural network for quantum
mechanical property prediction with molecular conformation [16.08677447593939]
We propose a dual-branched neural network for molecular property prediction based on message-passing framework.
Our model learns heterogeneous molecular features with different scales, which are trained flexibly according to each prediction target.
arXiv Detail & Related papers (2021-06-14T10:00:39Z) - Few-Shot Graph Learning for Molecular Property Prediction [46.60746023179724]
We propose Meta-MGNN, a novel model for few-shot molecular property prediction.
To exploit unlabeled molecular information, Meta-MGNN further incorporates molecular structure, attribute based self-supervised modules and self-attentive task weights.
Extensive experiments on two public multi-property datasets demonstrate that Meta-MGNN outperforms a variety of state-of-the-art methods.
arXiv Detail & Related papers (2021-02-16T01:55:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.