論文の概要: RECAP: Towards Precise Radiology Report Generation via Dynamic Disease
Progression Reasoning
- arxiv url: http://arxiv.org/abs/2310.13864v1
- Date: Sat, 21 Oct 2023 00:05:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 04:48:48.258779
- Title: RECAP: Towards Precise Radiology Report Generation via Dynamic Disease
Progression Reasoning
- Title(参考訳): RECAP: Dynamic Disease Progression Reasoning による精密放射線学レポート作成に向けて
- Authors: Wenjun Hou, Yi Cheng, Kaishuai Xu, Wenjie Li, Jiang Liu
- Abstract要約: 本稿では, ダイナミックな疾患進行推論を用いて, 高精度かつ正確な放射線診断レポートを生成するRECAPを提案する。
次に、レポート生成のための履歴記録、時間情報、およびラジオグラフを組み合わせて、進行グラフと動的進行推論機構を考案し、各観測および進行の属性を正確に選択する。
- 参考スコア(独自算出の注目度): 14.440200446778642
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automating radiology report generation can significantly alleviate
radiologists' workloads. Previous research has primarily focused on realizing
highly concise observations while neglecting the precise attributes that
determine the severity of diseases (e.g., small pleural effusion). Since
incorrect attributes will lead to imprecise radiology reports, strengthening
the generation process with precise attribute modeling becomes necessary.
Additionally, the temporal information contained in the historical records,
which is crucial in evaluating a patient's current condition (e.g., heart size
is unchanged), has also been largely disregarded. To address these issues, we
propose RECAP, which generates precise and accurate radiology reports via
dynamic disease progression reasoning. Specifically, RECAP first predicts the
observations and progressions (i.e., spatiotemporal information) given two
consecutive radiographs. It then combines the historical records,
spatiotemporal information, and radiographs for report generation, where a
disease progression graph and dynamic progression reasoning mechanism are
devised to accurately select the attributes of each observation and
progression. Extensive experiments on two publicly available datasets
demonstrate the effectiveness of our model.
- Abstract(参考訳): 放射線学レポート生成の自動化は、放射線学者の作業を大幅に軽減することができる。
これまでの研究は主に、疾患の重症度を決定する正確な特性(例えば、小さな胸水)を無視しながら、非常に簡潔な観察を実現することに重点を置いてきた。
不正確な属性が不正確な放射線学レポートにつながるため、正確な属性モデリングによる生成プロセスの強化が必要である。
また、患者の現在の状態(例えば、心臓の大きさは変化しない)を評価する上で重要な歴史的記録に含まれる時間的情報も無視されている。
これらの課題に対処するため,我々は,動的疾患進行推論を用いて正確な放射線診断レポートを生成するRECAPを提案する。
具体的には、RECAPは2つの連続したラジオグラフィーの観測と進行(時空間情報)を最初に予測する。
次に、各観察と進行の属性を正確に選択するために、疾患進行グラフと動的進行推論機構を考案したレポート作成のための履歴記録、時空間情報、放射線グラフを組み合わせる。
2つの公開データセットに対する大規模な実験は、我々のモデルの有効性を示す。
関連論文リスト
- HIST-AID: Leveraging Historical Patient Reports for Enhanced Multi-Modal Automatic Diagnosis [38.13689106933105]
HIST-AIDは,過去の報告から自動診断精度を高めるフレームワークである。
AUROCは6.56%増加し、AUPRCは9.51%向上した。
論文 参考訳(メタデータ) (2024-11-16T03:20:53Z) - HERGen: Elevating Radiology Report Generation with Longitudinal Data [18.370515015160912]
本研究では,患者訪問における経時的データを効率的に統合するHERGen(History Enhanced Radiology Report Generation)フレームワークを提案する。
本手法は, 各種歴史データの包括的解析を可能にするだけでなく, 補助的コントラスト的目的により, 生成した報告の質を向上させる。
3つのデータセットにまたがる広範囲な評価結果から,我々のフレームワークは,正確な放射線診断レポートを作成し,医用画像から疾患の進行を効果的に予測する上で,既存の手法を超越していることが明らかとなった。
論文 参考訳(メタデータ) (2024-07-21T13:29:16Z) - Time-aware Heterogeneous Graph Transformer with Adaptive Attention Merging for Health Event Prediction [6.578298085691462]
本稿では,疾患領域の知識を同化し,薬物と疾患の複雑な関係を解明するための新しい異種グラフ学習モデルを提案する。
2つの医療データセットで評価したところ、予測精度と解釈可能性の両方において顕著な改善が見られた。
論文 参考訳(メタデータ) (2024-04-23T08:01:30Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuerは、一般化可能な表現を学習する自動放射線学レポート生成のための調整されたモデルである。
本研究で利用した臨床データセットは,textbf332,673の顕著な総計を含む。
ChatRadio-Valuerは、最先端のモデル、特にChatGPT(GPT-3.5-Turbo)やGPT-4などより一貫して優れている。
論文 参考訳(メタデータ) (2023-10-08T17:23:17Z) - Longitudinal Data and a Semantic Similarity Reward for Chest X-Ray Report Generation [7.586632627817609]
放射線学者は、解釈と報告を必要とする胸部X線(CXR)の量の増加のために、高いバーンアウト率に直面している。
提案するCXRレポートジェネレータは,ワークフローの要素を統合し,強化学習のための新たな報酬を導入する。
本研究の結果から, 提案モデルでは, 最新技術モデルよりも, 放射線学者の報告に適合した報告が生成されることがわかった。
論文 参考訳(メタデータ) (2023-07-19T05:41:14Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
関連疾患に対するラベル付きデータの不足は、正確な診断にとって大きな課題となる。
本稿では,診断エージェントの学習を指導するための事前知識を導入する,新しい深層強化学習フレームワークを提案する。
提案手法の性能はNIHX-ray 14とCheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-06-02T01:46:31Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
コントラスト学習を用いた医療レポート作成を支援するために,動的構造とノードを持つ知識グラフを提案する。
詳しくは、グラフの基本構造は一般知識から事前構築される。
各イメージ機能は、レポート生成のためにデコーダモジュールに入力する前に、独自の更新グラフに統合される。
論文 参考訳(メタデータ) (2023-03-18T03:53:43Z) - Assessing the Performance of Automated Prediction and Ranking of Patient
Age from Chest X-rays Against Clinicians [4.795478287106675]
深層学習は、胸部X線から患者の年齢を正確に推定することを可能にしている。
本稿では,放射線科医と最先端のディープラーニングモデルの比較研究について述べる。
我々は,脳卒中患者の年齢による1.8M胸部X線の異種データベースを用いてモデルを訓練し,モデル精度の限界について検討した。
論文 参考訳(メタデータ) (2022-07-04T10:09:48Z) - Exploring and Distilling Posterior and Prior Knowledge for Radiology
Report Generation [55.00308939833555]
PPKEDには、Posterior Knowledge Explorer (PoKE), Prior Knowledge Explorer (PrKE), Multi-domain Knowledge Distiller (MKD)の3つのモジュールが含まれている。
PoKEは後部知識を探求し、視覚データのバイアスを軽減するために明確な異常な視覚領域を提供する。
PrKEは、以前の医学知識グラフ(医学知識)と以前の放射線学レポート(作業経験)から以前の知識を探り、テキストデータのバイアスを軽減する。
論文 参考訳(メタデータ) (2021-06-13T11:10:02Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
コンコルビンド病は、個人によって異なる複雑な時間的パターンを通じて発生し進行する。
電子的な健康記録では、患者が持つ異なる疾患を観察できるが、それぞれの共死状態の時間的関係を推測できるだけである。
我々は「ダイナミック・コオービディティ・ネットワーク」をモデル化するための深層拡散プロセスを開発する。
論文 参考訳(メタデータ) (2020-01-08T15:47:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。