論文の概要: HIST-AID: Leveraging Historical Patient Reports for Enhanced Multi-Modal Automatic Diagnosis
- arxiv url: http://arxiv.org/abs/2411.10684v1
- Date: Sat, 16 Nov 2024 03:20:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:34:19.728786
- Title: HIST-AID: Leveraging Historical Patient Reports for Enhanced Multi-Modal Automatic Diagnosis
- Title(参考訳): HIST-AIDによるマルチモーダル自動診断の進歩
- Authors: Haoxu Huang, Cem M. Deniz, Kyunghyun Cho, Sumit Chopra, Divyam Madaan,
- Abstract要約: HIST-AIDは,過去の報告から自動診断精度を高めるフレームワークである。
AUROCは6.56%増加し、AUPRCは9.51%向上した。
- 参考スコア(独自算出の注目度): 38.13689106933105
- License:
- Abstract: Chest X-ray imaging is a widely accessible and non-invasive diagnostic tool for detecting thoracic abnormalities. While numerous AI models assist radiologists in interpreting these images, most overlook patients' historical data. To bridge this gap, we introduce Temporal MIMIC dataset, which integrates five years of patient history, including radiographic scans and reports from MIMIC-CXR and MIMIC-IV, encompassing 12,221 patients and thirteen pathologies. Building on this, we present HIST-AID, a framework that enhances automatic diagnostic accuracy using historical reports. HIST-AID emulates the radiologist's comprehensive approach, leveraging historical data to improve diagnostic accuracy. Our experiments demonstrate significant improvements, with AUROC increasing by 6.56% and AUPRC by 9.51% compared to models that rely solely on radiographic scans. These gains were consistently observed across diverse demographic groups, including variations in gender, age, and racial categories. We show that while recent data boost performance, older data may reduce accuracy due to changes in patient conditions. Our work paves the potential of incorporating historical data for more reliable automatic diagnosis, providing critical support for clinical decision-making.
- Abstract(参考訳): 胸部X線画像は胸部異常を検出するための広くアクセス可能で非侵襲的な診断ツールである。
多くのAIモデルは、これらの画像の解釈において放射線学者を支援するが、ほとんどの人は患者の歴史的データを見落としている。
このギャップを埋めるために、X線撮影やMIMIC-CXRおよびMIMIC-IVからの報告を含む5年間の患者履歴を統合したTemporal MIMICデータセットを導入し、患者12,221人、病理13人を対象にした。
そこで本研究では,HIST-AIDを歴史的報告を用いて自動診断精度を高めるフレームワークとして提案する。
HIST-AIDは放射線技師の総合的なアプローチをエミュレートし、過去のデータを活用して診断精度を向上させる。
AUROCは6.56%増加し、AUPRCは9.51%向上した。
これらの増加は、性別、年齢、人種の多様性を含む多様な人口集団で一貫して観察された。
以上の結果から,最近のデータによってパフォーマンスが向上する一方,患者状況の変化による精度の低下が示唆された。
我々の研究は、より信頼性の高い自動診断のための歴史的データを組み込むことの可能性を示し、臨床的意思決定に重要な支援を提供する。
関連論文リスト
- Knowledge-driven AI-generated data for accurate and interpretable breast ultrasound diagnoses [29.70102468004044]
本稿では, 知識駆動型生成モデルを構築し, 適切な合成データを生成するパイプラインTAILORを提案する。
生成モデルは、ソースデータとして3,749の病変を使用し、特にエラーを起こしやすいまれな症例において、数百万の乳房US画像を生成することができる。
今後の外部評価では, 同じ感度で9名の放射線技師の平均性能を33.5%向上させる。
論文 参考訳(メタデータ) (2024-07-23T16:49:01Z) - HERGen: Elevating Radiology Report Generation with Longitudinal Data [18.370515015160912]
本研究では,患者訪問における経時的データを効率的に統合するHERGen(History Enhanced Radiology Report Generation)フレームワークを提案する。
本手法は, 各種歴史データの包括的解析を可能にするだけでなく, 補助的コントラスト的目的により, 生成した報告の質を向上させる。
3つのデータセットにまたがる広範囲な評価結果から,我々のフレームワークは,正確な放射線診断レポートを作成し,医用画像から疾患の進行を効果的に予測する上で,既存の手法を超越していることが明らかとなった。
論文 参考訳(メタデータ) (2024-07-21T13:29:16Z) - The Impact of Auxiliary Patient Data on Automated Chest X-Ray Report Generation and How to Incorporate It [12.61239008314719]
本研究は,胸部X線自動レポート生成のための多モーダル言語モデルへの多様な患者データソースの統合について検討する。
MIMIC-CXRおよびMIMIC-IV-EDデータセットを用いて, 診断精度を高めるために, バイタルサイン周期, 医薬, 臨床歴などの詳細な患者情報を組み込んだ。
論文 参考訳(メタデータ) (2024-06-19T03:25:31Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuerは、一般化可能な表現を学習する自動放射線学レポート生成のための調整されたモデルである。
本研究で利用した臨床データセットは,textbf332,673の顕著な総計を含む。
ChatRadio-Valuerは、最先端のモデル、特にChatGPT(GPT-3.5-Turbo)やGPT-4などより一貫して優れている。
論文 参考訳(メタデータ) (2023-10-08T17:23:17Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
関連疾患に対するラベル付きデータの不足は、正確な診断にとって大きな課題となる。
本稿では,診断エージェントの学習を指導するための事前知識を導入する,新しい深層強化学習フレームワークを提案する。
提案手法の性能はNIHX-ray 14とCheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-06-02T01:46:31Z) - Multi-confound regression adversarial network for deep learning-based
diagnosis on highly heterogenous clinical data [1.2891210250935143]
我々は、高度に異種な臨床データに基づいてディープラーニングモデルを訓練するための新しいディープラーニングアーキテクチャ、MUCRANを開発した。
われわれは、2019年以前にマサチューセッツ総合病院から収集した16,821個の臨床T1軸性脳MRIを用いてMUCRANを訓練した。
このモデルでは,新たに収集したデータに対して90%以上の精度で頑健な性能を示した。
論文 参考訳(メタデータ) (2022-05-05T18:39:09Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z) - Query-Focused EHR Summarization to Aid Imaging Diagnosis [22.21438906817433]
本稿では,患者記録から関連するテキストスニペットを抽出し,大まかな症例要約を提供するモデルを提案し,評価する。
我々は,「未来」記録で観察される国際疾患分類(ICD)コード群を,「下流」診断のためのうるさいプロキシとして使用した。
我々は、ボストンのブリガム・アンド・ウーマンズ病院とMIMIC-IIIのEHRデータに基づいて、このモデルのバリエーションを訓練し、評価する。
論文 参考訳(メタデータ) (2020-04-09T16:32:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。