論文の概要: Pre-Training on Large-Scale Generated Docking Conformations with HelixDock to Unlock the Potential of Protein-ligand Structure Prediction Models
- arxiv url: http://arxiv.org/abs/2310.13913v3
- Date: Mon, 20 May 2024 14:05:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 00:20:28.733774
- Title: Pre-Training on Large-Scale Generated Docking Conformations with HelixDock to Unlock the Potential of Protein-ligand Structure Prediction Models
- Title(参考訳): タンパク質リガンド構造予測モデルの可能性を解き放つため, HelixDock を用いた大規模ドッキングコンフォーメーションの事前評価
- Authors: Lihang Liu, Shanzhuo Zhang, Donglong He, Xianbin Ye, Jingbo Zhou, Xiaonan Zhang, Yaoyao Jiang, Weiming Diao, Hang Yin, Hua Chai, Fan Wang, Jingzhou He, Liang Zheng, Yonghui Li, Xiaomin Fang,
- Abstract要約: 本研究では,大規模ドッキングコンフォーメーションの事前学習により,優れた性能を有するタンパク質リガンド構造予測モデルが得られることを示す。
提案モデルであるHelixDockは,物理ベースのドッキングツールによってカプセル化された物理知識を,事前学習期間中に取得することを目的としている。
- 参考スコア(独自算出の注目度): 42.16524616409125
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Protein-ligand structure prediction is an essential task in drug discovery, predicting the binding interactions between small molecules (ligands) and target proteins (receptors). Recent advances have incorporated deep learning techniques to improve the accuracy of protein-ligand structure prediction. Nevertheless, the experimental validation of docking conformations remains costly, it raises concerns regarding the generalizability of these deep learning-based methods due to the limited training data. In this work, we show that by pre-training on a large-scale docking conformation generated by traditional physics-based docking tools and then fine-tuning with a limited set of experimentally validated receptor-ligand complexes, we can obtain a protein-ligand structure prediction model with outstanding performance. Specifically, this process involved the generation of 100 million docking conformations for protein-ligand pairings, an endeavor consuming roughly 1 million CPU core days. The proposed model, HelixDock, aims to acquire the physical knowledge encapsulated by the physics-based docking tools during the pre-training phase. HelixDock has been rigorously benchmarked against both physics-based and deep learning-based baselines, demonstrating its exceptional precision and robust transferability in predicting binding confirmation. In addition, our investigation reveals the scaling laws governing pre-trained protein-ligand structure prediction models, indicating a consistent enhancement in performance with increases in model parameters and the volume of pre-training data. Moreover, we applied HelixDock to several drug discovery-related tasks to validate its practical utility. HelixDock demonstrates outstanding capabilities on both cross-docking and structure-based virtual screening benchmarks.
- Abstract(参考訳): タンパク質リガンド構造予測は、小さな分子(リガンド)と標的タンパク質(受容体)の結合相互作用を予測する薬物発見において必須の課題である。
近年の進歩は、タンパク質リガンド構造予測の精度を向上させるためのディープラーニング技術が組み込まれている。
それでもドッキングコンフォーメーションの実験的な検証はコストがかかるままであり、訓練データに制限があるため、これらの深層学習手法の一般化可能性に関する懸念が高まる。
本研究では,従来の物理ドッキングツールによる大規模ドッキングコンフォメーションの事前トレーニングを行い,実験によって検証された受容体-リガンド複合体の限定セットを用いて微調整を行うことにより,優れた性能を有するタンパク質-リガンド構造予測モデルが得られることを示す。
具体的には、このプロセスはタンパク質とリガンドのペアリングのための1億ドッキングコンフォメーションを生成し、約100万のCPUコア日を要した。
提案モデルであるHelixDockは,物理ベースのドッキングツールによってカプセル化された物理知識を,事前学習期間中に取得することを目的としている。
HelixDockは、物理学ベースのベースラインとディープラーニングベースのベースラインの両方に対して厳格にベンチマークされ、バインディング確認の予測において、例外的な精度と堅牢な転送性を示している。
さらに,本研究は,事前学習したタンパク質リガンド構造予測モデルに基づくスケーリング法則を明らかにし,モデルパラメータの増加と事前学習データ量の増加に伴う性能の持続的な向上を示唆している。
さらに,HelixDockをいくつかの薬物発見関連タスクに適用し,その実用性を検証した。
HelixDockはクロスドッキングと構造ベースの仮想スクリーニングベンチマークの両方で優れた機能を示している。
関連論文リスト
- SPIN: SE(3)-Invariant Physics Informed Network for Binding Affinity Prediction [3.406882192023597]
タンパク質-リガンド結合親和性の正確な予測は、薬物開発に不可欠である。
伝統的な手法は、しばしば複合体の空間情報を正確にモデル化するのに失敗する。
この課題に適用可能な様々な帰納バイアスを組み込んだモデルSPINを提案する。
論文 参考訳(メタデータ) (2024-07-10T08:40:07Z) - Re-Dock: Towards Flexible and Realistic Molecular Docking with Diffusion
Bridge [69.80471117520719]
Re-Dockは、幾何学多様体に拡張された新しい拡散橋生成モデルである。
我々はNewton-Euler方程式にインスパイアされたエネルギー-幾何学マッピングを提案し、結合エネルギーとコンフォーメーションを共モデリングする。
アポドックやクロスドックといった設計済みのベンチマークデータセットの実験は、現在の手法よりもモデルの有効性と効率性が優れていることを示している。
論文 参考訳(メタデータ) (2024-02-18T05:04:50Z) - Multi-scale Iterative Refinement towards Robust and Versatile Molecular
Docking [17.28573902701018]
分子ドッキング(英: molecular docking)は、小分子のタンパク質標的への結合コンホメーションを予測するために使われる重要な計算ツールである。
我々は、効率的な分子ドッキング用に設計された堅牢で汎用的なフレームワークであるDeltaDockを紹介する。
論文 参考訳(メタデータ) (2023-11-30T14:09:20Z) - ETDock: A Novel Equivariant Transformer for Protein-Ligand Docking [36.14826783009814]
従来のドッキング法は、タンパク質と薬物のドッキングを予測するために、スコアリング機能とディープラーニングに依存している。
本稿では,タンパク質リガンドドッキングポーズ予測のためのトランスフォーマーニューラルネットワークを提案する。
実データを用いた実験結果から,本モデルが最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2023-10-12T06:23:12Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
タンパク質-リガンド複合体構造を直接予測できる計算手法であるNeuralPLexerを提案する。
我々の研究は、データ駆動型アプローチがタンパク質と小分子の構造的協調性を捉え、酵素や薬物分子などの設計を加速させる可能性を示唆している。
論文 参考訳(メタデータ) (2022-09-30T01:46:38Z) - From Static to Dynamic Structures: Improving Binding Affinity Prediction
with a Graph-Based Deep Learning Model [33.92165575735532]
タンパク質-リガンド結合親和性の正確な予測は、構造に基づく薬物設計において重要な課題である。
そこで我々は,3,218種類のタンパク質-リガンド複合体を含むMDデータセットをキュレートし,グラフに基づくディープラーニングモデルDynaformerを開発した。
ダイナフォーマーはMD軌道からタンパク質-リガンド相互作用の幾何学的特徴を学習することにより、結合親和性を正確に予測することができた。
論文 参考訳(メタデータ) (2022-08-19T14:55:12Z) - Independent SE(3)-Equivariant Models for End-to-End Rigid Protein
Docking [57.2037357017652]
我々は、剛体タンパク質ドッキング、すなわち、個々の非結合構造からタンパク質-タンパク質複合体の3次元構造を計算的に予測する。
本研究では, タンパク質の回転と翻訳を予測し, 1つのタンパク質をドッキング位置に置くために, ペアワイズ非独立なSE(3)-等変グラフマッチングネットワークを設計する。
我々のモデルはEquiDockと呼ばれ、結合ポケットを近似し、キーポイントマッチングとアライメントを用いてドッキングポーズを予測する。
論文 参考訳(メタデータ) (2021-11-15T18:46:37Z) - Transfer Learning for Protein Structure Classification at Low Resolution [124.5573289131546]
タンパク質のクラスとアーキテクチャの正確な(geq$80%)予測を、低い(leq$3A)解像度で決定された構造から行うことができることを示す。
本稿では, 高速で低コストなタンパク質構造を低解像度で分類するための概念実証と, 機能予測への拡張の基礎を提供する。
論文 参考訳(メタデータ) (2020-08-11T15:01:32Z) - Explainable Deep Relational Networks for Predicting Compound-Protein
Affinities and Contacts [80.69440684790925]
Deep Relationsは物理にインスパイアされた、本質的に説明可能なアーキテクチャを持つディープリレーショナルネットワークである。
それは最先端技術に対する優れた解釈可能性を示している。
接触予測 9.5, 16.9, 19.3, 5.7 倍の AUPRC をテスト用、複合ユニク、タンパク質ユニク、両ユニクセットで強化する。
論文 参考訳(メタデータ) (2019-12-29T00:14:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。