論文の概要: Ensemble Learning for Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2310.14166v1
- Date: Sun, 22 Oct 2023 03:55:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 01:21:46.739010
- Title: Ensemble Learning for Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークのためのアンサンブル学習
- Authors: Zhen Hao Wong, Ling Yue, Quanming Yao
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習するための様々な分野で成功している。
本稿では,GNNの性能とロバスト性向上のためのアンサンブル学習手法の適用について検討する。
- 参考スコア(独自算出の注目度): 28.3650473174488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have shown success in various fields for
learning from graph-structured data. This paper investigates the application of
ensemble learning techniques to improve the performance and robustness of Graph
Neural Networks (GNNs). By training multiple GNN models with diverse
initializations or architectures, we create an ensemble model named ELGNN that
captures various aspects of the data and uses the Tree-Structured Parzen
Estimator algorithm to determine the ensemble weights. Combining the
predictions of these models enhances overall accuracy, reduces bias and
variance, and mitigates the impact of noisy data. Our findings demonstrate the
efficacy of ensemble learning in enhancing GNN capabilities for analyzing
complex graph-structured data. The code is public at
https://github.com/wongzhenhao/ELGNN.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習するための様々な分野で成功している。
本稿では,グラフニューラルネットワーク(GNN)の性能と堅牢性向上のためのアンサンブル学習手法の適用について検討する。
多様な初期化やアーキテクチャを用いて複数のGNNモデルをトレーニングすることにより、データのさまざまな側面をキャプチャし、Tree-Structued Parzen Estimatorアルゴリズムを用いてアンサンブル重量を決定する、ELGNNと呼ばれるアンサンブルモデルを作成する。
これらのモデルの予測を組み合わせることで、全体的な精度を高め、バイアスと分散を低減し、ノイズデータの影響を軽減する。
本研究は,複雑なグラフ構造データ解析のためのGNN能力向上のためのアンサンブル学習の有効性を示す。
コードはhttps://github.com/wongzhenhao/elgnnで公開されている。
関連論文リスト
- Harnessing Collective Structure Knowledge in Data Augmentation for Graph Neural Networks [25.12261412297796]
グラフニューラルネットワーク(GNN)は,グラフ表現学習において最先端のパフォーマンスを達成した。
我々は新しいアプローチ、すなわち集合構造知識強化グラフニューラルネットワーク(CoS-GNN)を提案する。
論文 参考訳(メタデータ) (2024-05-17T08:50:00Z) - Loss-aware Curriculum Learning for Heterogeneous Graph Neural Networks [30.333265803394998]
異種グラフニューラルネットワーク(GNN)の性能向上のためのカリキュラム学習手法の適用について検討する。
データの品質をよりよく分類するために、データの全ノードの品質を測定するLTSと呼ばれる損失認識トレーニングスケジュールを設計する。
本研究は,複雑なグラフ構造データ解析のためのHGNNの能力向上のためのカリキュラム学習の有効性を示すものである。
論文 参考訳(メタデータ) (2024-02-29T05:44:41Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
本稿では,この新たな問題設定の数学的定義を紹介する。
一つのグラフ共有構造学習者と複数のグラフ固有GNNを協調する一般的なフレームワークを考案する。
十分に訓練された構造学習者は、微調整なしで、目に見えない対象グラフの適応的な構造を直接生成することができる。
論文 参考訳(メタデータ) (2023-06-20T03:33:22Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Simplifying approach to Node Classification in Graph Neural Networks [7.057970273958933]
グラフニューラルネットワークのノード特徴集約ステップと深さを分離し、異なる集約特徴が予測性能にどのように寄与するかを経験的に分析する。
集約ステップによって生成された全ての機能が有用であるとは限らないことを示し、これらの少ない情報的特徴を用いることは、GNNモデルの性能に有害であることを示す。
提案モデルでは,提案モデルが最先端のGNNモデルと同等あるいはそれ以上の精度を達成可能であることを実証的に示す。
論文 参考訳(メタデータ) (2021-11-12T14:53:22Z) - Improving Graph Neural Networks with Simple Architecture Design [7.057970273958933]
グラフニューラルネットワークの重要な設計戦略をいくつか紹介する。
簡便で浅いモデルである特徴選択グラフニューラルネットワーク(FSGNN)を紹介します。
提案手法は,他のGNNモデルよりも優れており,ノード分類タスクの精度が最大64%向上していることを示す。
論文 参考訳(メタデータ) (2021-05-17T06:46:01Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
グラフデータの教師なし表現を学習するためのグラフコントラスト学習(GraphCL)フレームワークを提案する。
我々のフレームワークは、最先端の手法と比較して、類似またはより良い一般化可能性、転送可能性、堅牢性のグラフ表現を作成できることを示す。
論文 参考訳(メタデータ) (2020-10-22T20:13:43Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。