論文の概要: Learning to bag with a simulation-free reinforcement learning framework
for robots
- arxiv url: http://arxiv.org/abs/2310.14398v1
- Date: Sun, 22 Oct 2023 20:19:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 00:00:11.694348
- Title: Learning to bag with a simulation-free reinforcement learning framework
for robots
- Title(参考訳): ロボットのためのシミュレーションなし強化学習フレームワークによるバッグの学習
- Authors: Francisco Munguia-Galeano, Jihong Zhu, Juan David Hern\'andez, Ze Ji
- Abstract要約: 本稿では,ロボットがバッグングを学習できる,効率的な学習ベースのフレームワークを提案する。
このフレームワークの新規性は、シミュレーションに頼らずにバッグングを行う能力である。
- 参考スコア(独自算出の注目度): 2.821591939897643
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bagging is an essential skill that humans perform in their daily activities.
However, deformable objects, such as bags, are complex for robots to
manipulate. This paper presents an efficient learning-based framework that
enables robots to learn bagging. The novelty of this framework is its ability
to perform bagging without relying on simulations. The learning process is
accomplished through a reinforcement learning algorithm introduced in this
work, designed to find the best grasping points of the bag based on a set of
compact state representations. The framework utilizes a set of primitive
actions and represents the task in five states. In our experiments, the
framework reaches a 60 % and 80 % of success rate after around three hours of
training in the real world when starting the bagging task from folded and
unfolded, respectively. Finally, we test the trained model with two more bags
of different sizes to evaluate its generalizability.
- Abstract(参考訳): バグングは、人間が日常的に行う重要なスキルです。
しかし、バッグのような変形可能な物体はロボットが操作するのに複雑である。
本稿では,ロボットが袋詰めを学習できる効率的な学習フレームワークを提案する。
このフレームワークの目新しさは、シミュレーションに頼らずに袋詰めを行う能力である。
本研究で導入した強化学習アルゴリズムにより,一組のコンパクトな状態表現に基づいて,バッグの最適な把握点を求めることができる。
このフレームワークは一連のプリミティブアクションを使用し、タスクを5つのステートで表現する。
実験では,バッジ作業の折り畳み作業と折り畳み作業の開始にあたり,実世界で約3時間のトレーニングを行った後,その成功率が60%,80%に達した。
最後に,その一般化性を評価するために,さらに2つの異なる大きさの袋でトレーニングモデルをテストした。
関連論文リスト
- Offline Imitation Learning Through Graph Search and Retrieval [57.57306578140857]
模倣学習は、ロボットが操作スキルを取得するための強力な機械学習アルゴリズムである。
本稿では,グラフ検索と検索により,最適下実験から学習する,シンプルで効果的なアルゴリズムGSRを提案する。
GSRは、ベースラインに比べて10%から30%高い成功率、30%以上の熟練を達成できる。
論文 参考訳(メタデータ) (2024-07-22T06:12:21Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
ロボット強化学習のためのリセット不要な微調整システムであるRoboFuMEを紹介する。
我々の洞察は、オフラインの強化学習技術を利用して、事前訓練されたポリシーの効率的なオンライン微調整を確保することである。
提案手法では,既存のロボットデータセットからのデータを組み込んで,目標タスクを3時間以内の自律現実体験で改善することができる。
論文 参考訳(メタデータ) (2023-10-23T17:50:08Z) - Reinforcement Learning with Foundation Priors: Let the Embodied Agent Efficiently Learn on Its Own [59.11934130045106]
我々は、政策、価値、成功-回帰基盤モデルからのガイダンスとフィードバックを活用するために、RLFP(Reinforcement Learning with Foundation Priors)を提案する。
本フレームワークでは,自動報酬関数を用いてより効率的にエージェントを探索できるファウンデーション誘導型アクター・クリティカル(FAC)アルゴリズムを導入する。
本手法は,実ロボットとシミュレーションの両方において,様々な操作タスクにおいて顕著な性能を実現する。
論文 参考訳(メタデータ) (2023-10-04T07:56:42Z) - Accelerating Robot Learning of Contact-Rich Manipulations: A Curriculum
Learning Study [4.045850174820418]
本稿では,Domain Randomization(DR)と組み合わせたカリキュラム学習に基づく,コンタクトリッチな操作タスクのロボット学習の高速化に関する研究を行う。
挿入タスクのような位置制御ロボットによる複雑な産業組み立てタスクに対処する。
また,おもちゃのタスクを用いたシミュレーションでのみトレーニングを行う場合においても,現実のロボットに伝達可能なポリシーを学習できることが示唆された。
論文 参考訳(メタデータ) (2022-04-27T11:08:39Z) - Learning to Fold Real Garments with One Arm: A Case Study in Cloud-Based
Robotics Research [21.200764836237497]
物理ハードウェア上でのファブリック操作アルゴリズムのシステマティックなベンチマークを行う。
専門家の行動、キーポイント、報酬関数、動的動きをモデル化する4つの新しい学習ベースアルゴリズムを開発した。
データ収集、モデルトレーニング、およびポリシー評価のライフサイクル全体は、ロボットワークセルへの物理的アクセスなしに遠隔で実行される。
論文 参考訳(メタデータ) (2022-04-21T17:31:20Z) - Bottom-Up Skill Discovery from Unsegmented Demonstrations for
Long-Horizon Robot Manipulation [55.31301153979621]
我々は,実世界の長距離ロボット操作作業に,スキル発見による取り組みを行う。
未解決のデモンストレーションから再利用可能なスキルのライブラリを学ぶためのボトムアップアプローチを提案する。
提案手法は,多段階操作タスクにおける最先端の模倣学習手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-09-28T16:18:54Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
多くのマルチタスク強化学習は、ロボットが常にすべてのタスクからデータを収集できると仮定している。
本研究では,物理ロボットシステムの実用的制約を動機として,現実的なマルチタスクRL問題について検討する。
我々は、ロボットのスキルセットを累積的に成長させるために、過去のタスクで学んだデータとポリシーを効果的に活用するアプローチを導出する。
論文 参考訳(メタデータ) (2021-09-19T18:00:51Z) - Active Hierarchical Imitation and Reinforcement Learning [0.0]
本研究では,我々が開発した階層的模倣強化学習フレームワークを用いて,様々な模倣学習アルゴリズムを探索し,アクティブ学習アルゴリズムを設計した。
実験の結果,daggerと報酬ベースのアクティブラーニング手法は,トレーニング過程において身体的および精神的により多くの努力を省きながら,よりよいパフォーマンスを達成できることがわかった。
論文 参考訳(メタデータ) (2020-12-14T08:27:27Z) - Reactive Long Horizon Task Execution via Visual Skill and Precondition
Models [59.76233967614774]
シミュレーションで学習したモデルを用いて、単純なタスクプランナの構成要素をグラウンド化することで、見知らぬロボットタスクを達成できるシミュレート・トゥ・リアル・トレーニングのアプローチについて述べる。
シミュレーションでは91.6%から98%,実世界の成功率は10%から80%に増加した。
論文 参考訳(メタデータ) (2020-11-17T15:24:01Z) - Reinforcement Learning Experiments and Benchmark for Solving Robotic
Reaching Tasks [0.0]
強化学習はロボットアームによる到達タスクの解決に成功している。
ハイドサイト体験再生探索技術により報奨信号の増大が, オフ・ポリティクス・エージェントの平均リターンを増加させることが示されている。
論文 参考訳(メタデータ) (2020-11-11T14:00:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。