論文の概要: Mobile Traffic Prediction at the Edge Through Distributed and Deep Transfer Learning
- arxiv url: http://arxiv.org/abs/2310.14456v2
- Date: Tue, 24 Dec 2024 19:05:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 21:44:04.64477
- Title: Mobile Traffic Prediction at the Edge Through Distributed and Deep Transfer Learning
- Title(参考訳): 分散・深層学習によるエッジにおける移動交通予測
- Authors: Alfredo Petrella, Marco Miozzo, Paolo Dini,
- Abstract要約: モバイルトラフィック予測のための、完全に分散化されたAIソリューションを調査し、データをローカルに保持できるようにする。
畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)の2つの主要なディープラーニングアーキテクチャが設計されている。
DTLは、トレーニング中の計算複雑性とエネルギー消費を大幅に減らし、CNNではエネルギーフットプリントを60%削減し、RNNでは90%削減する。
- 参考スコア(独自算出の注目度): 2.391548802248377
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traffic prediction represents one of the crucial tasks for smartly optimizing the mobile network. Recently, Artificial Intelligence (AI) has attracted attention to solve this problem thanks to its ability in cognizing the state of the mobile network and make intelligent decisions. Research on this topic has concentrated on making predictions in a centralized fashion, i.e., by collecting data from the different network elements and process them in a cloud center. This translates into inefficiencies due to the large amount of data transmissions and computations required, leading to high energy consumption. In this work, we investigate a fully decentralized AI solution for mobile traffic prediction that allows data to be kept locally, reducing energy consumption through collaboration among the base station sites. To do so, we propose a novel prediction framework based on edge computing and Deep Transfer Learning (DTL) techniques, using datasets obtained at the edge through a large measurement campaign. Two main Deep Learning architectures are designed based on Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) and tested under different training conditions. Simulation results show that the CNN architectures outperform the RNNs in accuracy and consume less energy. In both scenarios, DTL contributes to an accuracy enhancement in 85% of the examined cases compared to their stand-alone counterparts. Additionally, DTL significantly reduces computational complexity and energy consumption during training, resulting in a reduction of the energy footprint by 60% for CNNs and 90% for RNNs. Finally, two cutting-edge eXplainable Artificial Intelligence techniques are employed to interpret the derived learning models.
- Abstract(参考訳): トラフィック予測は、モバイルネットワークをスマートに最適化するための重要なタスクの1つだ。
近年,モバイルネットワークの状態を認識し,インテリジェントな意思決定を行う能力によって,AI(Artificial Intelligence)がこの問題の解決に注目を集めている。
このトピックの研究は、中央集権的な予測、すなわち異なるネットワーク要素からデータを収集し、それらをクラウドセンターで処理することで集中的に予測することに集中している。
これは大量のデータ転送と計算を必要とするため効率が悪くなり、高エネルギー消費につながる。
本研究では,モバイルトラフィック予測のための完全に分散化されたAIソリューションについて検討し,データをローカルに保存し,基地局間での協調によるエネルギー消費を削減した。
そこで我々は,エッジコンピューティングとDeep Transfer Learning(DTL)技術に基づく新しい予測フレームワークを提案する。
2つの主要なディープラーニングアーキテクチャは、畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)に基づいて設計され、異なるトレーニング条件下でテストされる。
シミュレーションの結果,CNNアーキテクチャはRNNよりも精度が高く,消費電力も少ないことがわかった。
どちらのシナリオでも、DTLはスタンドアローンのケースに比べて85%の精度向上に寄与する。
さらに、DTLはトレーニング中の計算複雑性とエネルギー消費を著しく削減し、CNNでは60%、RNNでは90%削減する。
最後に、2つの最先端のeXplainable Artificial Intelligence技術を用いて、派生した学習モデルを解釈する。
関連論文リスト
- Exploring Neural Network Pruning with Screening Methods [3.443622476405787]
現代のディープラーニングモデルは数千万のパラメータを持ち、推論プロセスはリソース集約化されている。
本稿では,非必須パラメータを除去するネットワーク・プルーニング・フレームワークの提案と評価を行う。
提案するフレームワークは,従来のネットワークと比較して,競争力のあるリーンネットワークを生成する。
論文 参考訳(メタデータ) (2025-02-11T02:31:04Z) - Optimizing Convolutional Neural Network Architecture [0.0]
畳み込みニューラルネットワーク(CNN)は、音声認識や自然言語処理、コンピュータビジョンといった課題に直面するために広く使われている。
我々は,プルーニングと知識蒸留に基づく新しいCNN最適化と構築手法であるOCNNAを提案する。
提案手法は,20以上の畳み込みニューラルネットワークの単純化アルゴリズムと比較し,優れた結果を得た。
論文 参考訳(メタデータ) (2023-12-17T12:23:11Z) - Evolution of Convolutional Neural Network (CNN): Compute vs Memory
bandwidth for Edge AI [0.0]
この記事では、Edge AIのコンテキストにおけるCNN計算要求とメモリ帯域幅の関係について検討する。
モデル複雑性が計算要求とメモリアクセスパターンの両方に与える影響について検討する。
この分析は、エッジデバイス上でのCNNパフォーマンス向上において、効率的なアーキテクチャと潜在的なハードウェアアクセラレータの設計に関する洞察を提供する。
論文 参考訳(メタデータ) (2023-09-24T09:11:22Z) - Transferability of Convolutional Neural Networks in Stationary Learning
Tasks [96.00428692404354]
本稿では,大規模な空間問題に対する畳み込みニューラルネットワーク(CNN)の効率的なトレーニングのための新しいフレームワークを提案する。
このような信号の小さなウィンドウで訓練されたCNNは、再学習することなく、はるかに大きなウィンドウでほぼ性能を発揮することを示す。
以上の結果から,CNNは10人未満の訓練を受けた後,数百人のエージェントによる問題に対処できることが示唆された。
論文 参考訳(メタデータ) (2023-07-21T13:51:45Z) - Solving Large-scale Spatial Problems with Convolutional Neural Networks [88.31876586547848]
大規模空間問題に対する学習効率を向上させるために移動学習を用いる。
畳み込みニューラルネットワーク (CNN) は, 信号の小さな窓で訓練できるが, 性能劣化の少ない任意の大信号で評価できる。
論文 参考訳(メタデータ) (2023-06-14T01:24:42Z) - Comparison Analysis of Traditional Machine Learning and Deep Learning
Techniques for Data and Image Classification [62.997667081978825]
本研究の目的は、コンピュータビジョン2次元オブジェクト分類タスクに使用される最も一般的な機械学習およびディープラーニング技術を分析し比較することである。
まず、視覚語モデルと深部畳み込みニューラルネットワーク(DCNN)の理論的背景を示す。
次に、Bag of Visual Wordsモデル、VGG16 CNN Architectureを実装します。
論文 参考訳(メタデータ) (2022-04-11T11:34:43Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
本稿では、新しい未知のトポロジや未知の予測タスクに適応可能な回路表現を学習するための教師付き事前学習手法を提案する。
異なる回路の変動位相構造に対処するため、各回路をグラフとして記述し、グラフニューラルネットワーク(GNN)を用いてノード埋め込みを学習する。
出力ノード電圧の予測における事前学習GNNは、新しい未知のトポロジや新しい回路レベル特性の予測に適応可能な学習表現を促進することができることを示す。
論文 参考訳(メタデータ) (2022-03-29T21:18:47Z) - Adaptive Explainable Neural Networks (AxNNs) [8.949704905866888]
我々は、予測性能とモデル解釈可能性の両目標を達成するために、Adaptive Explainable Neural Networks (AxNN) と呼ばれる新しいフレームワークを開発した。
予測性能向上のために,一般化された付加的モデルネットワークと付加的インデックスモデルからなる構造化ニューラルネットワークを構築した。
本稿では,AxNNの結果を主効果と高次相互作用効果に分解する方法を示す。
論文 参考訳(メタデータ) (2020-04-05T23:40:57Z) - Curriculum By Smoothing [52.08553521577014]
畳み込みニューラルネットワーク(CNN)は、画像分類、検出、セグメンテーションなどのコンピュータビジョンタスクにおいて顕著な性能を示している。
アンチエイリアスフィルタやローパスフィルタを用いてCNNの機能埋め込みを円滑化するエレガントなカリキュラムベースのスキームを提案する。
トレーニング中に特徴マップ内の情報量が増加するにつれて、ネットワークはデータのより優れた表現を徐々に学習することができる。
論文 参考訳(メタデータ) (2020-03-03T07:27:44Z) - Exploring the Connection Between Binary and Spiking Neural Networks [1.329054857829016]
両立ニューラルネットワークとスパイクニューラルネットワークの訓練における最近のアルゴリズムの進歩を橋渡しする。
極端量子化システムにおけるスパイキングニューラルネットワークのトレーニングは,大規模データセット上でのほぼ完全な精度向上をもたらすことを示す。
論文 参考訳(メタデータ) (2020-02-24T03:46:51Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。