Knowledge-Induced Medicine Prescribing Network for Medication Recommendation
- URL: http://arxiv.org/abs/2310.14552v2
- Date: Wed, 12 Jun 2024 17:44:44 GMT
- Title: Knowledge-Induced Medicine Prescribing Network for Medication Recommendation
- Authors: Ahmad Wisnu Mulyadi, Heung-Il Suk,
- Abstract summary: This study proposes a novel Knowledge-Induced Medicine Prescribing Network (KindMed) to recommend medicines.
We leverage hierarchical sequence learning to discover and fuse temporal dynamics of clinical (i.e., diagnosis and procedures) and medicine streams across patients' historical admissions to foster personalized recommendations.
We validated the effectiveness of our KindMed on the augmented real-world EHR cohorts, achieving improved recommendation performances against a handful of graph-driven baselines.
- Score: 9.591674293850557
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extensive adoption of electronic health records (EHRs) offers opportunities for their use in various downstream clinical analyses. To accomplish this purpose, enriching an EHR cohort with external knowledge (e.g., standardized medical ontology and wealthy semantics) could help us reveal more comprehensive insights via a spectrum of informative relations among medical codes. Nevertheless, harnessing those beneficial interconnections was scarcely exercised, especially in the medication recommendation task. This study proposes a novel Knowledge-Induced Medicine Prescribing Network (KindMed) to recommend medicines by inducing knowledge from myriad medical-related external sources upon the EHR cohort and rendering interconnected medical codes as medical knowledge graphs (KGs). On top of relation-aware graph representation learning to obtain an adequate embedding over such KGs, we leverage hierarchical sequence learning to discover and fuse temporal dynamics of clinical (i.e., diagnosis and procedures) and medicine streams across patients' historical admissions to foster personalized recommendations. Eventually, we employ attentive prescribing that accounts for three essential patient representations, i.e., a summary of joint historical medical records, clinical progression, and the current clinical state of patients. We validated the effectiveness of our KindMed on the augmented real-world EHR cohorts, achieving improved recommendation performances against a handful of graph-driven baselines.
Related papers
- Contrastive Learning on Medical Intents for Sequential Prescription Recommendation [7.780844394603662]
Attentive Recommendation with Contrasted Intents (ARCI) is designed to capture the different but coexisting temporal paths across a shared sequence of visits.
We conducted experiments on two real-world datasets for the prescription recommendation task using both ranking and classification metrics.
arXiv Detail & Related papers (2024-08-13T20:10:28Z) - MedKP: Medical Dialogue with Knowledge Enhancement and Clinical Pathway
Encoding [48.348511646407026]
We introduce the Medical dialogue with Knowledge enhancement and clinical Pathway encoding framework.
The framework integrates an external knowledge enhancement module through a medical knowledge graph and an internal clinical pathway encoding via medical entities and physician actions.
arXiv Detail & Related papers (2024-03-11T10:57:45Z) - Next Visit Diagnosis Prediction via Medical Code-Centric Multimodal Contrastive EHR Modelling with Hierarchical Regularisation [0.0]
We propose NECHO, a novel medical code-centric multimodal contrastive EHR learning framework with hierarchical regularisation.
First, we integrate multifaceted information encompassing medical codes, demographics, and clinical notes using a tailored network design.
We also regularise modality-specific encoders using a parental level information in medical ontology to learn hierarchical structure of EHR data.
arXiv Detail & Related papers (2024-01-22T01:58:32Z) - Zero-Shot Medical Information Retrieval via Knowledge Graph Embedding [27.14794371879541]
This paper introduces MedFusionRank, a novel approach to zero-shot medical information retrieval (MIR)
The proposed approach leverages a pre-trained BERT-style model to extract compact yet informative keywords.
These keywords are then enriched with domain knowledge by linking them to conceptual entities within a medical knowledge graph.
arXiv Detail & Related papers (2023-10-31T16:26:33Z) - DKINet: Medication Recommendation via Domain Knowledge Informed Deep Learning [12.609882335746859]
Medication recommendation is a fundamental yet crucial branch of healthcare.
Previous studies have primarily focused on learning patient representation from electronic health records.
We propose a knowledge injection module that addresses the effective integration of domain knowledge with complex clinical manifestations.
arXiv Detail & Related papers (2023-05-31T07:22:15Z) - Retrieval-Augmented and Knowledge-Grounded Language Models for Faithful Clinical Medicine [68.7814360102644]
We propose the Re$3$Writer method with retrieval-augmented generation and knowledge-grounded reasoning.
We demonstrate the effectiveness of our method in generating patient discharge instructions.
arXiv Detail & Related papers (2022-10-23T16:34:39Z) - Enriching Unsupervised User Embedding via Medical Concepts [51.17532619610099]
Unsupervised user embedding aims to encode patients into fixed-length vectors without human supervisions.
Medical concepts extracted from the clinical notes contain rich connections between patients and their clinical categories.
We propose a concept-aware unsupervised user embedding that jointly leverages text documents and medical concepts from two clinical corpora.
arXiv Detail & Related papers (2022-03-20T18:54:05Z) - Conditional Generation Net for Medication Recommendation [73.09366442098339]
Medication recommendation targets to provide a proper set of medicines according to patients' diagnoses, which is a critical task in clinics.
We propose Conditional Generation Net (COGNet) which introduces a novel copy-or-predict mechanism to generate the set of medicines.
We validate the proposed model on the public MIMIC data set, and the experimental results show that the proposed model can outperform state-of-the-art approaches.
arXiv Detail & Related papers (2022-02-14T10:16:41Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
We propose a new method that uses medical text of Electronic Health Records for prediction.
We represent discharge summaries of patients with multiview graphs enhanced by an external knowledge graph.
Experimental results prove the effectiveness of our method, yielding state-of-the-art performance.
arXiv Detail & Related papers (2021-12-19T01:45:57Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - PREMIER: Personalized REcommendation for Medical prescrIptions from
Electronic Records [8.365167718547296]
We design a two-stage attention-based personalized medication recommender system called PREMIER.
Our system takes into account the interactions among drugs in order to minimize the adverse effects for the patient.
Experiment results on MIMIC-III and a proprietary outpatient dataset show that PREMIER outperforms state-of-the-art medication recommendation systems.
arXiv Detail & Related papers (2020-08-28T04:48:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.