Modeling groundwater levels in California's Central Valley by hierarchical Gaussian process and neural network regression
- URL: http://arxiv.org/abs/2310.14555v3
- Date: Sat, 12 Oct 2024 01:55:59 GMT
- Title: Modeling groundwater levels in California's Central Valley by hierarchical Gaussian process and neural network regression
- Authors: Anshuman Pradhan, Kyra H. Adams, Venkat Chandrasekaran, Zhen Liu, John T. Reager, Andrew M. Stuart, Michael J. Turmon,
- Abstract summary: A novel machine learning method is formulated for modeling groundwater levels by learning from a 3D lithological texture model of the Central Valley aquifer.
We show how the model predictions may be used to supplement hydrological understanding of aquifer responses in basins with irregular well data.
Our results indicate that on average the 2017 and 2019 wet years in California were largely ineffective in replenishing the groundwater loss caused during previous drought years.
- Score: 9.816891579613628
- License:
- Abstract: Modeling groundwater levels continuously across California's Central Valley (CV) hydrological system is challenging due to low-quality well data which is sparsely and noisily sampled across time and space. The lack of consistent well data makes it difficult to evaluate the impact of 2017 and 2019 wet years on CV groundwater following a severe drought during 2012-2015. A novel machine learning method is formulated for modeling groundwater levels by learning from a 3D lithological texture model of the CV aquifer. The proposed formulation performs multivariate regression by combining Gaussian processes (GP) and deep neural networks (DNN). The hierarchical modeling approach constitutes training the DNN to learn a lithologically informed latent space where non-parametric regression with GP is performed. We demonstrate the efficacy of GP-DNN regression for modeling non-stationary features in the well data with fast and reliable uncertainty quantification, as validated to be statistically consistent with the empirical data distribution from 90 blind wells across CV. We show how the model predictions may be used to supplement hydrological understanding of aquifer responses in basins with irregular well data. Our results indicate that on average the 2017 and 2019 wet years in California were largely ineffective in replenishing the groundwater loss caused during previous drought years.
Related papers
- GeoFUSE: A High-Efficiency Surrogate Model for Seawater Intrusion Prediction and Uncertainty Reduction [0.10923877073891446]
Seawater intrusion into coastal aquifers poses a significant threat to groundwater resources.
We develop GeoFUSE, a novel deep-learning-based surrogate framework.
We apply GeoFUSE to a 2D cross-section of the Beaver Creek tidal stream-floodplain system in Washington State.
arXiv Detail & Related papers (2024-10-26T08:10:32Z) - WaterQualityNeT: Prediction of Seasonal Water Quality of Nepal Using Hybrid Deep Learning Models [0.0]
This paper presents a hybrid deep learning model for predicting Nepal's seasonal water quality using a small dataset.
The model integrates convolutional neural networks (CNN) and recurrent neural networks (RNN) to exploit temporal and spatial patterns in the data.
arXiv Detail & Related papers (2024-09-17T05:26:59Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
Flood inundation forecast provides critical information for emergency planning before and during flood events.
High-resolution hydrodynamic modeling has become more accessible in recent years, however, predicting flood extents at the street and building levels in real-time is still computationally demanding.
We present a hybrid process-based and data-driven machine learning (ML) approach for flood extent and inundation depth prediction.
arXiv Detail & Related papers (2023-07-29T22:49:50Z) - Kalman Filter for Online Classification of Non-Stationary Data [101.26838049872651]
In Online Continual Learning (OCL) a learning system receives a stream of data and sequentially performs prediction and training steps.
We introduce a probabilistic Bayesian online learning model by using a neural representation and a state space model over the linear predictor weights.
In experiments in multi-class classification we demonstrate the predictive ability of the model and its flexibility to capture non-stationarity.
arXiv Detail & Related papers (2023-06-14T11:41:42Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - Differentiable, learnable, regionalized process-based models with
physical outputs can approach state-of-the-art hydrologic prediction accuracy [1.181206257787103]
We show that differentiable, learnable, process-based models (called delta models here) can approach the performance level of LSTM for the intensively-observed variable (streamflow) with regionalized parameterization.
We use a simple hydrologic model HBV as the backbone and use embedded neural networks, which can only be trained in a differentiable programming framework.
arXiv Detail & Related papers (2022-03-28T15:06:53Z) - High-resolution rainfall-runoff modeling using graph neural network [0.0]
We propose a novel deep learning model that makes full use of spatial information from high-resolution precipitation data.
GNRRM has less over-fitting and significantly improves model performance.
arXiv Detail & Related papers (2021-10-21T00:12:02Z) - Artificial Intelligence Hybrid Deep Learning Model for Groundwater Level
Prediction Using MLP-ADAM [0.0]
In this paper, a multi-layer perceptron is applied to simulate groundwater level.
The adaptive moment estimation algorithm is also used to this matter.
Results indicate that deep learning algorithms can demonstrate a high accuracy prediction.
arXiv Detail & Related papers (2021-07-29T10:11:45Z) - Churn Reduction via Distillation [54.5952282395487]
We show an equivalence between training with distillation using the base model as the teacher and training with an explicit constraint on the predictive churn.
We then show that distillation performs strongly for low churn training against a number of recent baselines.
arXiv Detail & Related papers (2021-06-04T18:03:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.