論文の概要: CoF-CoT: Enhancing Large Language Models with Coarse-to-Fine
Chain-of-Thought Prompting for Multi-domain NLU Tasks
- arxiv url: http://arxiv.org/abs/2310.14623v1
- Date: Mon, 23 Oct 2023 06:54:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-24 22:00:10.692318
- Title: CoF-CoT: Enhancing Large Language Models with Coarse-to-Fine
Chain-of-Thought Prompting for Multi-domain NLU Tasks
- Title(参考訳): CoF-CoT:マルチドメインNLUタスクのための粗いチェーン・オブ・ソートによる大規模言語モデルの強化
- Authors: Hoang H. Nguyen, Ye Liu, Chenwei Zhang, Tao Zhang, Philip S. Yu
- Abstract要約: Chain-of-Thoughtプロンプトは推論タスクで人気があるが、自然言語理解(NLU)への応用は未検討である。
大規模言語モデル (LLMs) の多段階的推論により動機付け, CoF-CoT (Coarse-to-Fine Chain-of-Thought) アプローチを提案する。
- 参考スコア(独自算出の注目度): 46.862929778121675
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While Chain-of-Thought prompting is popular in reasoning tasks, its
application to Large Language Models (LLMs) in Natural Language Understanding
(NLU) is under-explored. Motivated by multi-step reasoning of LLMs, we propose
Coarse-to-Fine Chain-of-Thought (CoF-CoT) approach that breaks down NLU tasks
into multiple reasoning steps where LLMs can learn to acquire and leverage
essential concepts to solve tasks from different granularities. Moreover, we
propose leveraging semantic-based Abstract Meaning Representation (AMR)
structured knowledge as an intermediate step to capture the nuances and diverse
structures of utterances, and to understand connections between their varying
levels of granularity. Our proposed approach is demonstrated effective in
assisting the LLMs adapt to the multi-grained NLU tasks under both zero-shot
and few-shot multi-domain settings.
- Abstract(参考訳): Chain-of-Thoughtのプロンプトは推論タスクで人気があるが、自然言語理解(NLU)におけるLarge Language Models(LLMs)への応用は未定である。
llmsの多段階推論に動機づけられ,nluタスクを複数の推論ステップに分解し,llmが様々な粒度からタスクを解決するための必須概念を習得し活用する,粗粒間連鎖(cof-cot)アプローチを提案する。
さらに、意味に基づく抽象的意味表現(AMR)構造化知識を中間段階として活用して、発話のニュアンスや多様な構造を捉え、その粒度の異なる関係を理解することを提案する。
提案手法は、ゼロショットと少数ショットの両方のマルチドメイン設定の下で、多粒性NLUタスクへのLLMの適応を支援するのに有効である。
関連論文リスト
- Fine-tuning Multimodal Large Language Models for Product Bundling [53.01642741096356]
Bundle-MLLMは,大規模言語モデル(LLM)をハイブリットアイテムトークン化アプローチにより微調整する新しいフレームワークである。
具体的には、テキスト、メディア、およびリレーショナルデータを統一トークン化に統合し、テキストトークンと非テキストトークンを区別するソフトな分離トークンを導入する。
1)バンドルパターンを学習し,2)製品バンドル固有のマルチモーダルセマンティック理解の強化を行う。
論文 参考訳(メタデータ) (2024-07-16T13:30:14Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Nash CoT: Multi-Path Inference with Preference Equilibrium [40.50811042423615]
CoT(Chain of Think)は、複雑な推論タスクにおいて、LLM(Large Language Models)のパフォーマンスを向上させるための推論フレームワークである。
より良い結果を得るためには、推論パスの数に最適な設定は存在しない。
アラビア推論,コモンセンス質問回答,シンボリック推論など,さまざまな推論タスクにおけるナッシュCoTの評価を行った。
論文 参考訳(メタデータ) (2024-06-18T07:46:13Z) - Fine-Tuning Large Vision-Language Models as Decision-Making Agents via Reinforcement Learning [79.38140606606126]
強化学習(RL)を用いた視覚言語モデル(VLM)を微調整するアルゴリズムフレームワークを提案する。
我々のフレームワークはタスク記述を提供し、次にVLMにチェーン・オブ・シント(CoT)推論を生成するよう促す。
提案手法は,VLMエージェントの様々なタスクにおける意思決定能力を向上させる。
論文 参考訳(メタデータ) (2024-05-16T17:50:19Z) - LLM Discussion: Enhancing the Creativity of Large Language Models via Discussion Framework and Role-Play [43.55248812883912]
大規模言語モデル(LLM)は自然言語処理において例外的な習熟度を示してきたが、しばしばオープンエンドの質問に対する創造的で独創的な応答を生成できない。
LLM議論は,アイデア交換の活発化と多様化を促進する3段階の議論フレームワークである。
提案手法の有効性を, 代替利用テスト, 類似性テスト, インスタンステスト, 科学的創造性テストを用いて評価した。
論文 参考訳(メタデータ) (2024-05-10T10:19:14Z) - Structure Guided Prompt: Instructing Large Language Model in Multi-Step
Reasoning by Exploring Graph Structure of the Text [44.81698187939784]
本稿では,大規模言語モデル(LLM)の多段階推論能力向上を目的としたフレームワークであるStructure Guided Promptを紹介する。
実験の結果,このフレームワークはLLMの推論能力を大幅に向上し,より広い範囲の自然言語シナリオを拡張できることがわかった。
論文 参考訳(メタデータ) (2024-02-20T22:56:23Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
本稿では,LMRL-Gymベンチマークを用いて,大規模言語モデル(LLM)のマルチターンRLの評価を行う。
我々のベンチマークは8つの異なる言語タスクで構成されており、複数ラウンドの言語相互作用が必要であり、オープンエンド対話やテキストゲームにおける様々なタスクをカバーする。
論文 参考訳(メタデータ) (2023-11-30T03:59:31Z) - Chain-of-Thought Tuning: Masked Language Models can also Think Step By
Step in Natural Language Understanding [25.36416774024584]
Chain-of-Thought (CoT) は、Large Language Models (LLM) を自然言語形式の中間段階を通して多段階の推論へと導く技術である。
本稿では,即時チューニングに基づく2段階の推論フレームワークとしてChain-of-Thought (CoTT)を提案する。
論文 参考訳(メタデータ) (2023-10-18T05:39:20Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corexは,大規模言語モデルを自律エージェントに変換する,新たな汎用戦略スイートだ。
人間の振る舞いにインスパイアされたCorexは、Debate、Review、Retrieveモードといった多様なコラボレーションパラダイムによって構成されている。
我々は,複数のLDMを協調的に演奏することで,既存の手法に比べて性能が著しく向上することが実証された。
論文 参考訳(メタデータ) (2023-09-30T07:11:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。