論文の概要: A self-adaptive genetic algorithm for the flying sidekick travelling
salesman problem
- arxiv url: http://arxiv.org/abs/2310.14713v1
- Date: Mon, 23 Oct 2023 08:51:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-24 21:19:11.835257
- Title: A self-adaptive genetic algorithm for the flying sidekick travelling
salesman problem
- Title(参考訳): 空飛ぶサイドキックトラベルセールスマン問題に対する自己適応型遺伝的アルゴリズム
- Authors: Ted Pilcher
- Abstract要約: 本稿では,自己適応型遺伝的アルゴリズムを用いてFSTSP(Flying Sidekick Travelling Salesman Problem)の解法を提案する。
FSTSPでは、ドローンを戦略的に展開し、顧客の位置情報を入手し難い場所に提供しながら、すべての場所を訪問するための総時間を最小化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel approach to solving the Flying Sidekick
Travelling Salesman Problem (FSTSP) using a state-of-the-art self-adaptive
genetic algorithm. The Flying Sidekick Travelling Salesman Problem is a
combinatorial optimisation problem that extends the Travelling Salesman Problem
(TSP) by introducing the use of drones. In FSTSP, the objective is to minimise
the total time to visit all locations while strategically deploying a drone to
serve hard-to-reach customer locations. Also, to the best of my knowledge, this
is the first time a self-adaptive genetic algorithm (GA) has been used to solve
the FSTSP problem. Experimental results on smaller-sized problem instances
demonstrate that this algorithm can find a higher quantity of optimal solutions
and a lower percentage gap to the optimal solution compared to rival
algorithms. Moreover, on larger-sized problem instances, this algorithm
outperforms all rival algorithms on each problem size while maintaining a
reasonably low computation time.
- Abstract(参考訳): 本稿では,現在最先端の自己適応型遺伝的アルゴリズムを用いて,FSTSP(Flying Sidekick Travelling Salesman Problem)の解法を提案する。
フライングサイドキックトラベルセールスマン問題(フライングサイドキックトラベルセールスマン問題、Flying Sidekick Travelling Salesman Problem)は、トラベルリングセールスマン問題(TSP)を拡張した、ドローンの導入による組合せ最適化問題である。
FSTSPの目的は、ドローンを戦略的に展開しながら、すべての場所を訪問するための総時間を最小化することである。
また、私の知る限りでは、FSTSP問題を解決するために自己適応型遺伝的アルゴリズム(GA)が使用されるのはこれが初めてです。
より小さな問題事例に対する実験結果から,本アルゴリズムは競合するアルゴリズムと比較して,最適な解の量が多く,最適解の比率が低いことを示す。
さらに、より大規模な問題の場合、このアルゴリズムは各問題サイズで競合するアルゴリズムを全て上回り、計算時間は合理的に低い。
関連論文リスト
- A Hybrid Genetic Algorithm for the min-max Multiple Traveling Salesman
Problem [0.9790236766474201]
本稿では,Multiple Traveling Salesman Problem (mTSP) を解くためのハイブリッド遺伝的アルゴリズムを提案する。
新たなクロスオーバーオペレーターは、2人の親からの同様のツアーを組み合わせるように設計されており、人口に対して大きな多様性を提供する。
我々のアルゴリズムは、ベンチマークセットに対してテストした場合に、同様のカットオフ時間しきい値で、すべての既存のアルゴリズムを平均で上回ります。
論文 参考訳(メタデータ) (2023-07-14T01:57:10Z) - A Hybrid Genetic Algorithm with Type-Aware Chromosomes for Traveling Salesman Problems with Drone [0.8287206589886881]
トラベル・セールスマン問題(TSPD)やフライング・サイドキック・トラベリング・セールスマン問題(FSTSP)と呼ばれる新たな交通問題が存在する。
本研究では,局所探索と動的プログラミングを取り入れたTSPDとFSTSPのハイブリッド遺伝的アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-01T16:11:09Z) - A Metaheuristic Algorithm for Large Maximum Weight Independent Set
Problems [58.348679046591265]
ノード重み付きグラフが与えられたとき、ノード重みが最大となる独立した(相互に非隣接な)ノードの集合を見つける。
このアプリケーションで放送されるグラフの中には、数十万のノードと数億のエッジを持つ大きなものもあります。
我々は,不規則なランダム化適応検索フレームワークにおいてメタヒューリスティックな新しい局所探索アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-03-28T21:34:16Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
オンラインアルゴリズム選択(OAS)では、アルゴリズム問題クラスのインスタンスがエージェントに次々に提示され、エージェントは、固定された候補アルゴリズムセットから、おそらく最高のアルゴリズムを迅速に選択する必要がある。
SAT(Satisfiability)のような決定問題に対して、品質は一般的にアルゴリズムのランタイムを指す。
本研究では,OASのマルチアームバンディットアルゴリズムを再検討し,この問題に対処する能力について議論する。
ランタイム指向の損失に適応し、時間的地平線に依存しない空間的・時間的複雑さを維持しながら、部分的に検閲されたデータを可能にする。
論文 参考訳(メタデータ) (2021-09-13T18:10:52Z) - Bayesian Algorithm Execution: Estimating Computable Properties of
Black-box Functions Using Mutual Information [78.78486761923855]
多くの現実世界では、T関数の評価の予算を考えると、高価なブラックボックス関数 f の性質を推測したい。
本稿では,アルゴリズムの出力に対して相互情報を最大化するクエリを逐次選択する手法InfoBAXを提案する。
これらの問題に対してInfoBAXは、元のアルゴリズムで要求されるより500倍少ないクエリをfに使用する。
論文 参考訳(メタデータ) (2021-04-19T17:22:11Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - A Two-Timescale Framework for Bilevel Optimization: Complexity Analysis
and Application to Actor-Critic [142.1492359556374]
双レベル最適化は、2レベル構造を示す問題のクラスである。
このような二段階問題に対処するための2段階近似(TTSA)アルゴリズムを提案する。
本稿では,TTSAフレームワークの特殊な事例として,2段階の自然なアクター・クリティカルポリシー最適化アルゴリズムが有用であることを示す。
論文 参考訳(メタデータ) (2020-07-10T05:20:02Z) - Extending the Multiple Traveling Salesman Problem for Scheduling a Fleet
of Drones Performing Monitoring Missions [4.477547027158141]
事前に定義された地点でノードを複数回訪問する必要があるグラフ上で、一連のドローンの走行経路をスケジュールする方法を示す。
提案した定式化は,交通ネットワークにおける交通流のモニタリングや遠隔地からの探索・救助活動の監視など,いくつかの領域に適用することができる。
詳細な評価では、グリーディアルゴリズムは最適の92.06%でほぼ最適性能を示し、数百台のドローンや位置で設定できる可能性がある。
論文 参考訳(メタデータ) (2020-06-02T09:17:18Z) - Private Stochastic Convex Optimization: Optimal Rates in Linear Time [74.47681868973598]
本研究では,凸損失関数の分布から得られた個体群損失を最小化する問題について検討する。
Bassilyらによる最近の研究は、$n$のサンプルを与えられた過剰な人口損失の最適境界を確立している。
本稿では,余剰損失に対する最適境界を達成するとともに,$O(minn, n2/d)$グラデーション計算を用いて凸最適化アルゴリズムを導出する2つの新しい手法について述べる。
論文 参考訳(メタデータ) (2020-05-10T19:52:03Z) - Towards Solving Large-scale Expensive Optimization Problems Efficiently
Using Coordinate Descent Algorithm [3.1600708674008393]
計算予算が限られているLSEGO問題に対処するために,修正された座標 Descent アルゴリズム (MCD) を提案する。
提案アルゴリズムは,関心領域の探索と,指数速度で半分に折り畳むことで検索空間の縮小という,2つの主要なステップの恩恵を受ける。
提案アルゴリズムは,次元1000の20個のベンチマーク関数上でのデルタグルーピングと協調的共進化との比較を行った。
論文 参考訳(メタデータ) (2020-03-07T22:48:38Z) - sKPNSGA-II: Knee point based MOEA with self-adaptive angle for Mission
Planning Problems [2.191505742658975]
いくつかの問題には、多くの非支配的な解をもたらす多くの目的がある。
本稿では,最も重要な解を得るために設計された新しいアルゴリズムを提案する。
このアルゴリズムは無人航空機(UAV)ミッション計画問題における実世界の応用に応用されている。
論文 参考訳(メタデータ) (2020-02-20T17:07:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。