Unleashing the potential of prompt engineering in Large Language Models: a comprehensive review
- URL: http://arxiv.org/abs/2310.14735v4
- Date: Tue, 18 Jun 2024 16:21:12 GMT
- Title: Unleashing the potential of prompt engineering in Large Language Models: a comprehensive review
- Authors: Banghao Chen, Zhaofeng Zhang, Nicolas Langrené, Shengxin Zhu,
- Abstract summary: The paper delves into the pivotal role of prompt engineering in unleashing the capabilities of Large Language Models (LLMs)
This survey elucidates foundational principles of prompt engineering, such as role-prompting, one-shot, and few-shot prompting.
We discuss how to assess the efficacy of prompt methods from different perspectives and using different methods.
- Score: 1.6006550105523192
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper delves into the pivotal role of prompt engineering in unleashing the capabilities of Large Language Models (LLMs). Prompt engineering is the process of structuring input text for LLMs and is a technique integral to optimizing the efficacy of LLMs. This survey elucidates foundational principles of prompt engineering, such as role-prompting, one-shot, and few-shot prompting, as well as more advanced methodologies such as the chain-of-thought and tree-of-thoughts prompting. The paper sheds light on how external assistance in the form of plugins can assist in this task, and reduce machine hallucination by retrieving external knowledge. We subsequently delineate prospective directions in prompt engineering research, emphasizing the need for a deeper understanding of structures and the role of agents in Artificial Intelligence-Generated Content (AIGC) tools. We discuss how to assess the efficacy of prompt methods from different perspectives and using different methods. Finally, we gather information about the application of prompt engineering in such fields as education and programming, showing its transformative potential. This comprehensive survey aims to serve as a friendly guide for anyone venturing through the big world of LLMs and prompt engineering.
Related papers
- On the role of Artificial Intelligence methods in modern force-controlled manufacturing robotic tasks [0.0]
AI's role in enhancing robotic manipulators is rapidly leading to significant innovations in smart manufacturing.
This article is to frame these innovations in practical force-controlled applications, highlighting their necessity for maintaining high-quality production standards.
The analysis concludes with a perspective on future research directions, emphasizing the need for common performance metrics to validate AI techniques.
arXiv Detail & Related papers (2024-09-25T11:29:26Z) - From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
Cross-modal reasoning (CMR) is increasingly recognized as a crucial capability in the progression toward more sophisticated artificial intelligence systems.
The recent trend of deploying Large Language Models (LLMs) to tackle CMR tasks has marked a new mainstream of approaches for enhancing their effectiveness.
This survey offers a nuanced exposition of current methodologies applied in CMR using LLMs, classifying these into a detailed three-tiered taxonomy.
arXiv Detail & Related papers (2024-09-19T02:51:54Z) - Explanation, Debate, Align: A Weak-to-Strong Framework for Language Model Generalization [0.6629765271909505]
This paper introduces a novel approach to model alignment through weak-to-strong generalization in the context of language models.
Our results suggest that this facilitation-based approach not only enhances model performance but also provides insights into the nature of model alignment.
arXiv Detail & Related papers (2024-09-11T15:16:25Z) - Science based AI model certification for new operational environments with application in traffic state estimation [1.2186759689780324]
The expanding role of Artificial Intelligence (AI) in diverse engineering domains highlights the challenges associated with deploying AI models in new operational environments.
This paper proposes a science-based certification methodology to assess the viability of employing pre-trained data-driven models in new operational environments.
arXiv Detail & Related papers (2024-05-13T16:28:00Z) - Human-Centered AI Product Prototyping with No-Code AutoML: Conceptual Framework, Potentials and Limitations [0.0]
This paper focuses on the challenges posed by the probabilistic nature of AI behavior and the limited accessibility of prototyping tools to non-experts.
A Design Science Research (DSR) approach is presented which culminates in a conceptual framework aimed at improving the AI prototyping process.
The framework describes the seamless incorporation of non-expert input and evaluation during prototyping, leveraging the potential of no-code AutoML to enhance accessibility and interpretability.
arXiv Detail & Related papers (2024-02-06T16:00:32Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Interpretable and Explainable Machine Learning Methods for Predictive
Process Monitoring: A Systematic Literature Review [1.3812010983144802]
This paper presents a systematic review on the explainability and interpretability of machine learning (ML) models within the context of predictive process mining.
We provide a comprehensive overview of the current methodologies and their applications across various application domains.
Our findings aim to equip researchers and practitioners with a deeper understanding of how to develop and implement more trustworthy, transparent, and effective intelligent systems for process analytics.
arXiv Detail & Related papers (2023-12-29T12:43:43Z) - Instruction Tuning for Large Language Models: A Survey [52.86322823501338]
We make a systematic review of the literature, including the general methodology of IT, the construction of IT datasets, the training of IT models, and applications to different modalities, domains and applications.
We also review the potential pitfalls of IT along with criticism against it, along with efforts pointing out current deficiencies of existing strategies and suggest some avenues for fruitful research.
arXiv Detail & Related papers (2023-08-21T15:35:16Z) - Constrained Reinforcement Learning for Robotics via Scenario-Based
Programming [64.07167316957533]
It is crucial to optimize the performance of DRL-based agents while providing guarantees about their behavior.
This paper presents a novel technique for incorporating domain-expert knowledge into a constrained DRL training loop.
Our experiments demonstrate that using our approach to leverage expert knowledge dramatically improves the safety and the performance of the agent.
arXiv Detail & Related papers (2022-06-20T07:19:38Z) - Holistic Adversarial Robustness of Deep Learning Models [91.34155889052786]
Adversarial robustness studies the worst-case performance of a machine learning model to ensure safety and reliability.
This paper provides a comprehensive overview of research topics and foundational principles of research methods for adversarial robustness of deep learning models.
arXiv Detail & Related papers (2022-02-15T05:30:27Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
Development of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
Engineering systems follow well-defined processes and testing standards to streamline development for high-quality, reliable results.
We propose a proven systems engineering approach for machine learning development and deployment.
arXiv Detail & Related papers (2020-06-21T17:14:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.