論文の概要: A Comparative Study of Portfolio Optimization Methods for the Indian
Stock Market
- arxiv url: http://arxiv.org/abs/2310.14748v1
- Date: Mon, 23 Oct 2023 09:33:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-05 14:13:12.106795
- Title: A Comparative Study of Portfolio Optimization Methods for the Indian
Stock Market
- Title(参考訳): インド株式市場におけるポートフォリオ最適化手法の比較研究
- Authors: Jaydip Sen, Arup Dasgupta, Partha Pratim Sengupta, and Sayantani Roy
Choudhury
- Abstract要約: 本章では、インド株式市場におけるMVP、HRP、HERCの3つのポートフォリオ最適化手法の比較研究について述べる。
各クラスタの上位株式は、2022年7月1日に公表されたNSEの報告書から、彼らのフリーフロート市場資本化に基づいて特定される。
各部門は、2019年7月1日から2022年6月30日までの3つのポートフォリオ最適化アプローチに従って、株価に基づいて3つのポートフォリオを設計する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This chapter presents a comparative study of the three portfolio optimization
methods, MVP, HRP, and HERC, on the Indian stock market, particularly focusing
on the stocks chosen from 15 sectors listed on the National Stock Exchange of
India. The top stocks of each cluster are identified based on their free-float
market capitalization from the report of the NSE published on July 1, 2022 (NSE
Website). For each sector, three portfolios are designed on stock prices from
July 1, 2019, to June 30, 2022, following three portfolio optimization
approaches. The portfolios are tested over the period from July 1, 2022, to
June 30, 2023. For the evaluation of the performances of the portfolios, three
metrics are used. These three metrics are cumulative returns, annual
volatilities, and Sharpe ratios. For each sector, the portfolios that yield the
highest cumulative return, the lowest volatility, and the maximum Sharpe Ratio
over the training and the test periods are identified.
- Abstract(参考訳): 本章では、インド株式市場におけるMVP、HRP、HERCの3つのポートフォリオ最適化手法の比較研究、特にインド証券取引所に上場している15部門から選択された株式について紹介する。
各クラスタの上位株は、2022年7月1日に発行されたnse(nse webサイト)のレポートから、フリーフロー市場資本に基づいて特定される。
各部門は、2019年7月1日から2022年6月30日までの3つのポートフォリオ最適化アプローチに従って、株価に基づいて3つのポートフォリオを設計する。
ポートフォリオは2022年7月1日から2023年6月30日までの期間にテストされる。
ポートフォリオのパフォーマンス評価には,3つの指標が使用される。
これら3つの指標は累積リターン、年次ボラティリティ、シャープ比である。
各セクタに対して、最高累積リターン、最低ボラティリティ、およびトレーニングとテスト期間における最大シャープ比を与えるポートフォリオを特定する。
関連論文リスト
- Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
本稿では,これらの投資商品を活用するために,ニューラルネットワークに基づく効果的なアルゴリズムを提案する。
シャープ比を最大化するために、各アセットの割り当て重量を時間間隔で出力するディープニューラルネットワークを訓練する。
ネットワークの特定の資産に対するバイアスを規制する新たな損失項を提案し,最小分散戦略に近い割り当て戦略をネットワークに学習させる。
論文 参考訳(メタデータ) (2023-10-02T12:33:28Z) - Performance Evaluation of Equal-Weight Portfolio and Optimum Risk
Portfolio on Indian Stocks [0.0]
ポートフォリオ設計に対する3つのアプローチは、リスクを最小化し、リスクを最適化し、ストックに等しい重量を割り当てる。
ポートフォリオは2017年1月1日から2022年12月31日までの株価に基づいて設計されている。
ポートフォリオのパフォーマンスを比較し、各セクターにより高いリターンをもたらすポートフォリオを特定する。
論文 参考訳(メタデータ) (2023-09-24T17:06:58Z) - CSPRD: A Financial Policy Retrieval Dataset for Chinese Stock Market [61.59326951366202]
我々は、中国株式政策検索データセット(CSPRD)を導入して、新たな課題である政策検索を提案する。
CSPRDは、中国の政策コーパスの10k以上の項目から、経験豊富な専門家によってラベル付けされた700以上のパスを提供する。
我々の最高のパフォーマンスベースラインは56.1% MRR@10、28.5% NDCG@10、37.5% Recall@10、80.6% Precision@10である。
論文 参考訳(メタデータ) (2023-09-08T15:40:54Z) - Portfolio Optimization: A Comparative Study [0.0]
この章では、3つのポートフォリオ設計アプローチ、平均分散ポートフォリオ(MVP)、階層的リスクパリティ(HRP)ベースのポートフォリオ、オートエンコーダベースのポートフォリオを比較します。
ポートフォリオは、2018年1月1日から2021年12月31日までの株価データを用いて設計され、2022年1月1日から2022年12月31日までのサンプル外データでそのパフォーマンスをテストする。
MVPポートフォリオのパフォーマンスは、リスク調整されたリターンのアウトオブサンプルデータで最高のものであることが観察された。
論文 参考訳(メタデータ) (2023-07-11T06:56:06Z) - A Comparative Analysis of Portfolio Optimization Using Mean-Variance,
Hierarchical Risk Parity, and Reinforcement Learning Approaches on the Indian
Stock Market [0.0]
本稿では,3つのポートフォリオ最適化手法の性能の比較分析を行う。
ポートフォリオは、いくつかの株価データに基づいてトレーニングされ、テストされ、そのパフォーマンスは、年次リターン、年次リスク、シャープ比率で比較される。
論文 参考訳(メタデータ) (2023-05-27T16:38:18Z) - E2EAI: End-to-End Deep Learning Framework for Active Investing [123.52358449455231]
本稿では, ファクタ選択, ファクタ組み合わせ, 株式選択, ポートフォリオ構築を通じて, ファクター投資のほぼ全過程をカバーするE2Eを提案する。
実際の株式市場データの実験は、アクティブ投資におけるエンドツーエンドのディープ・リーン・フレームワークの有効性を示している。
論文 参考訳(メタデータ) (2023-05-25T10:27:07Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and
Large Language Models [57.70351255180495]
当社はChatGPTを使用して、各見出しが企業の株価に対して良いか悪いか、中立かを評価する。
また,ChatGPTは従来の感情分析法よりも優れていた。
ChatGPT-4に基づくロングショート戦略はシャープ比が最も高い。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - A Comparative Study of Hierarchical Risk Parity Portfolio and Eigen
Portfolio on the NIFTY 50 Stocks [1.5773159234875098]
本稿では,インド株式市場の7分野における階層的リスクパリティアルゴリズムと固有ポートフォリオという2つのアプローチを用いたポートフォリオ最適化の体系的アプローチを提案する。
ポートフォリオのバックテストの結果は、HRPポートフォリオのパフォーマンスが、調査されたセクターの大部分のトレーニングデータとテストデータの両方において、そのパフォーマンスよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-10-03T14:51:24Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
本稿では,異常な状況下での株価の変動パターンを捉えることを目的とする。
ARIMAとLSTMのモデルは、シングルストックレベル、業界レベル、一般市場レベルでトレーニングします。
2016年から2020年にかけての100社の株価に基づいて、平均予測精度は98%に達した。
論文 参考訳(メタデータ) (2021-09-14T18:50:38Z) - Optimum Risk Portfolio and Eigen Portfolio: A Comparative Analysis Using
Selected Stocks from the Indian Stock Market [0.0]
本稿では,インド株式市場の7つの重要な分野について,ポートフォリオ設計,リスクポートフォリオの最小化,リスクポートフォリオの最適化,Eigenポートフォリオの3つのアプローチを提案する。
毎日の株価は、2016年1月1日から2020年12月31日までYahoo Financeのウェブサイトから取り除かれた。
ポートフォリオは、年次リターンとリスク、構成銘柄に割り当てられた重み、相関ヒートマップ、Eigenポートフォリオの主成分など、いくつかの指標に基づいて、トレーニングデータに基づいて分析される。
論文 参考訳(メタデータ) (2021-07-23T17:50:45Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
ポートフォリオマネジメント(PM)は、最大利益や最小リスクといった投資目標を達成することを目的としている。
本稿では,PMのための新しいステート拡張RLフレームワークであるSARLを提案する。
当社の枠組みは, 金融PMにおける2つのユニークな課題に対処することを目的としている。(1) データの異種データ -- 資産毎の収集情報は通常, 多様性, ノイズ, 不均衡(ニュース記事など), (2) 環境の不確実性 -- 金融市場は多様で非定常である。
論文 参考訳(メタデータ) (2020-02-09T08:10:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。