論文の概要: The WHY in Business Processes: Discovery of Causal Execution Dependencies
- arxiv url: http://arxiv.org/abs/2310.14975v2
- Date: Thu, 16 May 2024 14:56:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-17 19:24:18.923988
- Title: The WHY in Business Processes: Discovery of Causal Execution Dependencies
- Title(参考訳): ビジネスプロセスにおけるWHY - 因果実行依存の発見
- Authors: Fabiana Fournier, Lior Limonad, Inna Skarbovsky, Yuval David,
- Abstract要約: プロセスアクティビティの実行間の因果関係を明らかにすることは、プロセス介入の結果を予測する重要な要素である。
この研究は、既存の因果発見アルゴリズムを活動タイミングよりも活用することにより、因果ビジネスプロセスの公開に対する体系的なアプローチを提供する。
本手法は,3つの因果パターンの文脈における2つのモデル間の相違を探索し,これらの不整合がマイニングプロセスモデル上で注釈付けされるという新たな視点を導出する。
- 参考スコア(独自算出の注目度): 2.0811729303868005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unraveling the causal relationships among the execution of process activities is a crucial element in predicting the consequences of process interventions and making informed decisions regarding process improvements. Process discovery algorithms exploit time precedence as their main source of model derivation. Hence, a causal view can supplement process discovery, being a new perspective in which relations reflect genuine cause-effect dependencies among the tasks. This calls for faithful new techniques to discover the causal execution dependencies among the tasks in the process. To this end, our work offers a systematic approach to the unveiling of the causal business process by leveraging an existing causal discovery algorithm over activity timing. In addition, this work delves into a set of conditions under which process mining discovery algorithms generate a model that is incongruent with the causal business process model, and shows how the latter model can be methodologically employed for a sound analysis of the process. Our methodology searches for such discrepancies between the two models in the context of three causal patterns, and derives a new view in which these inconsistencies are annotated over the mined process model. We demonstrate our methodology employing two open process mining algorithms, the IBM Process Mining tool, and the LiNGAM causal discovery technique. We apply it on a synthesized dataset and on two open benchmark data sets.
- Abstract(参考訳): プロセスアクティビティの実行間の因果関係を明らかにすることは、プロセス介入の結果を予測し、プロセス改善に関する情報的な決定を行う上で重要な要素である。
プロセス発見アルゴリズムは、時間優先をモデル導出の主源とする。
したがって、因果的な視点はプロセス発見を補うことができ、タスク間の真の因果関係を反映する新しい視点である。
これにより、プロセス内のタスク間の因果的実行依存性を発見するための忠実な新しいテクニックが求められます。
そこで本研究は,既存の因果発見アルゴリズムを活動タイミングよりも活用することで,因果ビジネスプロセスの公開に対する体系的なアプローチを提供する。
さらに,本研究は,プロセスマイニング探索アルゴリズムが因果的ビジネスプロセスモデルと整合しないモデルを生成する一連の条件に着目し,プロセスの音響解析に後者のモデルを方法論的に適用する方法を示す。
本手法は,3つの因果パターンの文脈における2つのモデル間の相違を探索し,これらの不整合がマイニングプロセスモデル上で注釈付けされるという新たな視点を導出する。
我々は,2つのオープンプロセスマイニングアルゴリズム,IBM Process Miningツール,LiNGAM因果発見技術を用いた手法を実証する。
合成データセットと2つのオープンベンチマークデータセットに適用する。
関連論文リスト
- Extracting Process-Aware Decision Models from Object-Centric Process
Data [54.04724730771216]
本稿では,ODDA(Integrated Object-centric Decision Discovery Algorithm)と呼ばれる,オブジェクト中心決定マイニングアルゴリズムを提案する。
IODDAは意思決定の仕組みや意思決定の仕方を知ることができる。
論文 参考訳(メタデータ) (2024-01-26T13:27:35Z) - Discovering Hierarchical Process Models: an Approach Based on Events
Clustering [0.0]
本稿では,2段階のワークフローネットとして表現される階層的プロセスモデルを発見するアルゴリズムを提案する。
既存のソリューションとは異なり、我々のアルゴリズムはプロセス制御フローに制限を課さず、反復を可能にする。
論文 参考訳(メタデータ) (2023-03-12T11:05:40Z) - Learning to Agree on Vision Attention for Visual Commonsense Reasoning [50.904275811951614]
VCRモデルは、画像に関する質問に答えることを目的としており、続いて、前の回答プロセスの合理性予測が続く。
既存の手法は2つのプロセス間の重要な関係を無視し、最適化されたモデルの性能をもたらす。
本稿では,これら2つのプロセスを統一的な枠組みで効果的に処理する新しい視覚的アライメント手法を提案する。
論文 参考訳(メタデータ) (2023-02-04T07:02:29Z) - Prescriptive Process Monitoring: Quo Vadis? [64.39761523935613]
本論文はシステム文献レビュー(SLR)を通して,本分野における既存手法について考察する。
SLRは今後の研究の課題や分野に関する洞察を提供し、規範的なプロセス監視手法の有用性と適用性を高めることができる。
論文 参考訳(メタデータ) (2021-12-03T08:06:24Z) - Process discovery on deviant traces and other stranger things [6.974048370610024]
我々は、宣言的プロセスに焦点をあて、プロセス発見のあまり人気のない視点をバイナリ教師付き学習タスクとして受け入れる。
これら2つのセットから得られる価値情報を抽出し,ユーザ定義の目標に従って最適なモデルにフォーマル化する方法について,より深く検討する。
論文 参考訳(メタデータ) (2021-09-30T06:58:34Z) - Feature Recommendation for Structural Equation Model Discovery in
Process Mining [0.0]
本稿では,問題に影響を及ぼす可能性のある(集約された)特徴の集合を見つける方法を提案する。
提案手法をProMのプラグインとして実装し、2つの実・合成イベントログを用いて評価した。
論文 参考訳(メタデータ) (2021-08-13T12:23:01Z) - All That Glitters Is Not Gold: Towards Process Discovery Techniques with
Guarantees [1.3299507495084417]
イベントデータの品質が向上すればするほど、発見されたモデルの品質も向上します。
イベントデータと発見したプロセスモデルの両方に、さまざまな品質対策を使用してこれを実証します。
本論文は、ISエンジニアのコミュニティに対して、プロセスディスカバリアルゴリズムを、入力の性質と出力の性質を関連付けたプロパティで補完するよう呼びかけている。
論文 参考訳(メタデータ) (2020-12-23T16:08:47Z) - Cross-Supervised Joint-Event-Extraction with Heterogeneous Information
Networks [61.950353376870154]
Joint-event- Extractは、トリガとエンティティのタグからなるタグセットを備えたシーケンスからシーケンスまでのラベリングタスクである。
トリガやエンティティの抽出を交互に監督するクロススーパーバイザードメカニズム(CSM)を提案する。
我々の手法は、エンティティとトリガー抽出の両方において最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-10-13T11:51:17Z) - Knowledge-Aware Procedural Text Understanding with Multi-Stage Training [110.93934567725826]
本稿では,このような文書の理解とプロセス中のエンティティの状態や場所の追跡を目的とした手続き的テキスト理解の課題に焦点をあてる。
常識的推論の難しさとデータ不足という2つの課題はまだ未解決のままである。
我々は、複数の外部知識を効果的に活用する、KnOwledge-Aware ProceduraL text understAnding (KOALA)モデルを提案する。
論文 参考訳(メタデータ) (2020-09-28T10:28:40Z) - Process Discovery for Structured Program Synthesis [70.29027202357385]
プロセスマイニングにおける中核的なタスクは、イベントログデータから正確なプロセスモデルを学ぶことを目的としたプロセス発見である。
本稿では,ターゲットプロセスモデルとして(ブロック-)構造化プログラムを直接使用することを提案する。
我々は,このような構造化プログラムプロセスモデルの発見に対して,新たなボトムアップ・アグリメティブ・アプローチを開発する。
論文 参考訳(メタデータ) (2020-08-13T10:33:10Z) - A Technique for Determining Relevance Scores of Process Activities using
Graph-based Neural Networks [0.0]
本研究では,プロセス活動の関連点を評価指標として評価する手法を開発した。
このような関連性スコアでプロセスモデルに注釈を付けることは、ビジネスプロセスの問題に焦点を当てた分析を促進する。
異なる領域の4つのデータセットを用いて,本手法の予測品質を定量的に評価し,妥当性スコアの忠実性を示す。
論文 参考訳(メタデータ) (2020-08-07T12:15:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。