論文の概要: Compressed Sensing of Generative Sparse-latent (GSL) Signals
- arxiv url: http://arxiv.org/abs/2310.15119v1
- Date: Mon, 16 Oct 2023 12:49:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-29 15:59:08.111517
- Title: Compressed Sensing of Generative Sparse-latent (GSL) Signals
- Title(参考訳): GSL(Generative Sparse-latent)信号の圧縮センシング
- Authors: Antoine Honor\'e, Anubhab Ghosh, Saikat Chatterjee
- Abstract要約: 本研究では、ニューラルネットワークに基づく生成モデルを持つ圧縮センシング(CS)システムにおいて、周囲信号の再構成を検討する。
生成信号としての周囲信号はスパース遅延入力を生成する。
- 参考スコア(独自算出の注目度): 9.00058212634219
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider reconstruction of an ambient signal in a compressed sensing (CS)
setup where the ambient signal has a neural network based generative model. The
generative model has a sparse-latent input and we refer to the generated
ambient signal as generative sparse-latent signal (GSL). The proposed sparsity
inducing reconstruction algorithm is inherently non-convex, and we show that a
gradient based search provides a good reconstruction performance. We evaluate
our proposed algorithm using simulated data.
- Abstract(参考訳): 本研究では、ニューラルネットワークに基づく生成モデルを持つ圧縮センシング(CS)装置における環境信号の再構成を検討する。
生成モデルはスパースラテント入力を持ち、生成した周囲信号を生成スパースラテント信号(GSL)と呼ぶ。
提案手法は本質的に非凸であり,勾配に基づく探索が良好な再構成性能を示すことを示す。
シミュレーションデータを用いて提案アルゴリズムを評価する。
関連論文リスト
- Outlier Detection Using Generative Models with Theoretical Performance
Guarantees [11.985270449383272]
出力器の存在下で生成モデルを用いて信号の復元を理論的に保証する。
この結果は、線形生成ニューラルネットワークと、任意の数の層を持つ非線形生成ニューラルネットワークの両方に適用できる。
論文 参考訳(メタデータ) (2023-10-16T01:25:34Z) - Graph Signal Sampling for Inductive One-Bit Matrix Completion: a
Closed-form Solution [112.3443939502313]
グラフ信号解析と処理の利点を享受する統合グラフ信号サンプリングフレームワークを提案する。
キーとなる考え方は、各ユーザのアイテムのレーティングをアイテムイットグラフの頂点上の関数(信号)に変換することである。
オンライン設定では、グラフフーリエ領域における連続ランダムガウス雑音を考慮したベイズ拡張(BGS-IMC)を開発する。
論文 参考訳(メタデータ) (2023-02-08T08:17:43Z) - JSRNN: Joint Sampling and Reconstruction Neural Networks for High
Quality Image Compressed Sensing [8.902545322578925]
提案フレームワークには,サンプリングサブネットワークと再構築サブネットワークという2つのサブネットワークが含まれている。
再構成サブネットワークでは、スタックド・デノイング・オートエンコーダ(SDA)と畳み込みニューラルネットワーク(CNN)を組み合わせたカスケードネットワークが信号の再構成のために設計されている。
このフレームワークは、特にサンプリングレートの低い他の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2022-11-11T02:20:30Z) - Semi-signed neural fitting for surface reconstruction from unoriented
point clouds [53.379712818791894]
より優れた符号付き距離場を再構成するためのSN-Fittingを提案する。
SSNフィッティングは半署名の監督と損失に基づく領域サンプリング戦略で構成されている。
我々は,SSN-Fittingが,異なる設定下で最先端の性能を達成することを示す実験を行う。
論文 参考訳(メタデータ) (2022-06-14T09:40:17Z) - Solving Inverse Problems with Conditional-GAN Prior via Fast
Network-Projected Gradient Descent [11.247580943940918]
本研究では,実測条件生成モデルのためのネットワークベース射影勾配降下(NPGD)アルゴリズムについて検討する。
実測条件モデルとNPGDの組み合わせは, 圧縮信号の回復に有効であり, 類似性や性能が向上し, より高速な再構成が可能であることを示す。
論文 参考訳(メタデータ) (2021-09-02T17:28:05Z) - Orthogonal Features Based EEG Signals Denoising Using Fractional and
Compressed One-Dimensional CNN AutoEncoder [3.8580784887142774]
本稿では脳波(EEG)信号の分数的1次元畳み込みニューラルネットワーク(CNN)オートエンコーダを提案する。
脳波信号は、主に筋肉アーチファクト(MA)によって、記録過程中にしばしばノイズによって汚染される。
論文 参考訳(メタデータ) (2021-04-16T13:58:05Z) - Plug-And-Play Learned Gaussian-mixture Approximate Message Passing [71.74028918819046]
そこで本研究では,従来のi.i.d.ソースに適した圧縮圧縮センシング(CS)リカバリアルゴリズムを提案する。
我々のアルゴリズムは、Borgerdingの学習AMP(LAMP)に基づいて構築されるが、アルゴリズムに普遍的な復調関数を採用することにより、それを大幅に改善する。
数値評価により,L-GM-AMPアルゴリズムは事前の知識を必要とせず,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-11-18T16:40:45Z) - Conditioning Trick for Training Stable GANs [70.15099665710336]
本稿では,GANトレーニング中の不安定性問題に対応するため,ジェネレータネットワークに正規性から逸脱する条件付け手法を提案する。
我々は、生成元をシュア分解のスペクトル領域で計算された実サンプルの正規化関数から逸脱するように強制する。
論文 参考訳(メタデータ) (2020-10-12T16:50:22Z) - Improving Stability of LS-GANs for Audio and Speech Signals [70.15099665710336]
このベクトル空間で計算された正規性からジェネレータ最適化の定式化への切り離しの符号化は、より包括的な分光図を作成するのに役立つことを示す。
本手法をベースラインGANと比較してモード崩壊の少ないトレーニングにおける安定性向上に有効であることを示す。
論文 参考訳(メタデータ) (2020-08-12T17:41:25Z) - When and How Can Deep Generative Models be Inverted? [28.83334026125828]
近年, 深部生成モデル (GAN, VAE) が盛んに開発されている。
我々は、そのような生成モデルが可逆である任意の逆アルゴリズム(漸進降下、ディープエンコーダなど)に適用可能な条件を定義する。
本手法は, クリーン信号と劣化信号の両方に対して, 発生器を反転させる際の勾配勾配よりも優れることを示す。
論文 参考訳(メタデータ) (2020-06-28T09:37:52Z) - Sample Complexity Bounds for 1-bit Compressive Sensing and Binary Stable
Embeddings with Generative Priors [52.06292503723978]
生成モデルを用いた圧縮センシングの進歩により, 生成モデルを用いた1ビット圧縮センシングの問題点を考察した。
まずノイズのない1ビット測定を考察し, ガウス測度に基づく近似回復のためのサンプル複雑性境界を提供する。
また,リプシッツ連続生成モデルを用いた1ビット圧縮センシングにも有効であることを示すため,評価誤差と雑音に対する再構成の堅牢性を示すBinary $epsilon$-Stable Embedding特性を実証した。
論文 参考訳(メタデータ) (2020-02-05T09:44:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。