論文の概要: DISC-FinLLM: A Chinese Financial Large Language Model based on Multiple
Experts Fine-tuning
- arxiv url: http://arxiv.org/abs/2310.15205v1
- Date: Mon, 23 Oct 2023 11:33:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 22:33:13.065117
- Title: DISC-FinLLM: A Chinese Financial Large Language Model based on Multiple
Experts Fine-tuning
- Title(参考訳): DISC-FinLLM: 複数の専門家による微調整に基づく中国の金融大規模言語モデル
- Authors: Wei Chen, Qiushi Wang, Zefei Long, Xianyin Zhang, Zhongtian Lu,
Bingxuan Li, Siyuan Wang, Jiarong Xu, Xiang Bai, Xuanjing Huang, Zhongyu Wei
- Abstract要約: 金融大規模言語モデル(LLM)を構築するための多言語エキスパートファインチューニングフレームワークを提案する。
DISC-FIN-SFTという金融インストラクションチューニングデータセットを構築し、4つのカテゴリ(コンサルト、NLPタスク、コンピューティング、検索強化ジェネレーション)のインストラクションサンプルを含む。
複数のベンチマークで評価した結果, 様々な財務シナリオにおいて, ベースラインモデルよりも優れた性能を示した。
- 参考スコア(独自算出の注目度): 74.99318727786337
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose Multiple Experts Fine-tuning Framework to build a financial large
language model (LLM), DISC-FinLLM. Our methodology improves general LLMs by
endowing them with multi-turn question answering abilities, domain text
processing capabilities, mathematical computation skills, and
retrieval-enhanced generation capabilities. We build a financial
instruction-tuning dataset named DISC-FIN-SFT, including instruction samples of
four categories (consulting, NLP tasks, computing and retrieval-augmented
generation). Evaluations conducted on multiple benchmarks demonstrate that our
model performs better than baseline models in various financial scenarios.
Further resources can be found at https://github.com/FudanDISC/DISC-FinLLM.
- Abstract(参考訳): 金融大規模言語モデル (LLM) を構築するために, マルチエキスパートファインチューニングフレームワークを提案する。
提案手法は,マルチターン質問応答能力,ドメインテキスト処理能力,数理計算能力,検索エンハンスド生成能力を用いて,一般的なllmを改善する。
DISC-FIN-SFT という金融インストラクションチューニングデータセットを構築し、4つのカテゴリ(コンサルト、NLPタスク、コンピューティング、検索強化生成)のインストラクションサンプルを含む。
複数のベンチマークで評価した結果, 様々な財務シナリオにおいて, ベースラインモデルよりも優れた性能を示した。
さらなるリソースはhttps://github.com/FudanDISC/DISC-FinLLMで見ることができる。
関連論文リスト
- SNFinLLM: Systematic and Nuanced Financial Domain Adaptation of Chinese Large Language Models [6.639972934967109]
大規模言語モデル (LLM) は、金融業界において自然言語処理を推進するための強力なツールとなっている。
SNFinLLMという中国の金融ドメイン向けに設計された新しい大規模言語モデルを提案する。
SNFinLLMは、質問への回答、財務調査レポートの要約、感情の分析、財務計算の実行など、ドメイン固有のタスクに優れています。
論文 参考訳(メタデータ) (2024-08-05T08:24:24Z) - NumLLM: Numeric-Sensitive Large Language Model for Chinese Finance [15.662858834827444]
FinLLMは、数値変数が質問に関わったとき、財務文書を理解するのに不満足な性能を示す。
中国語金融のための数値感性大言語モデル(NumLLM)を提案する。
ファイナンシャル質問答えベンチマークの実験では、NumLLMが基礎モデルの性能を向上させることが示されている。
論文 参考訳(メタデータ) (2024-05-01T15:17:27Z) - FinBen: A Holistic Financial Benchmark for Large Language Models [75.09474986283394]
FinBenは、24の財務タスクにまたがる36のデータセットを含む、最初の大規模なオープンソース評価ベンチマークである。
FinBenは、幅広いタスクとデータセット、ストックトレーディングの最初の評価、新しいエージェントと検索可能な生成(RAG)の評価、およびテキスト要約、質問応答、株式トレーディングのための3つの新しいオープンソース評価データセットを提供する。
論文 参考訳(メタデータ) (2024-02-20T02:16:16Z) - Evaluating LLMs' Mathematical Reasoning in Financial Document Question
Answering [53.56653281752486]
本研究では,大言語モデルによる4つの財務質問応答データセットの数学的推論について検討する。
数理推論のステップの数が増えるにつれて、テーブルの複雑さや性能の変化に対する感度に焦点をあてる。
半構造化文書に適した新しいプロンプト技術を導入する。
論文 参考訳(メタデータ) (2024-02-17T05:10:18Z) - A Survey of Large Language Models in Finance (FinLLMs) [10.195778659105626]
大規模言語モデル(LLM)は、さまざまな自然言語処理(NLP)タスクで顕著な機能を示している。
この調査は、FinLLMの歴史、テクニック、パフォーマンス、機会と課題を含む、包括的な概要を提供する。
ファイナンスにおけるAI研究を支援するために、アクセス可能なデータセットと評価ベンチマークのコレクションをGitHubにコンパイルします。
論文 参考訳(メタデータ) (2024-02-04T02:06:57Z) - TAT-LLM: A Specialized Language Model for Discrete Reasoning over Tabular and Textual Data [73.29220562541204]
我々は,言語モデル(LLM)の驚くべきパワーを活用して課題を解決することを検討する。
LLaMA2を微調整し,既存のエキスパートアノテートデータセットから自動生成したトレーニングデータを用いてTAT-LLM言語モデルを開発する。
論文 参考訳(メタデータ) (2024-01-24T04:28:50Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
数学領域における推論は、小言語モデル(LM)にとって重要な課題である。
多様なアノテーションスタイルで既存の数学的問題データセットを利用する新しい手法を提案する。
実験結果から,LLaMA-7Bモデルが先行手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-07-16T05:41:53Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIUは、命令データ付き微調整LLaMAに基づく最初の金融大規模言語モデル(LLM)を含む包括的なフレームワークである。
我々はLLaMAを細調整してFinMAを提案する。
我々は、FinMAと既存のLLMを詳細に分析し、重要な財政課題に対処する際の長所と短所を明らかにする。
論文 参考訳(メタデータ) (2023-06-08T14:20:29Z) - WHEN FLUE MEETS FLANG: Benchmarks and Large Pre-trained Language Model
for Financial Domain [42.093876880881886]
ドメイン固有型金融LANGuageモデル(FLANG)を提案する。
ファイナンシャルキーワードとフレーズを使用して、スパン境界目的とインフィリング目的ととともに、マスキングを改善する。
私たちのモデル、コード、ベンチマークデータはGithubとHuggingfaceで公開されています。
論文 参考訳(メタデータ) (2022-10-31T18:35:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。