Specialist or Generalist? Instruction Tuning for Specific NLP Tasks
- URL: http://arxiv.org/abs/2310.15326v1
- Date: Mon, 23 Oct 2023 19:46:48 GMT
- Title: Specialist or Generalist? Instruction Tuning for Specific NLP Tasks
- Authors: Chufan Shi, Yixuan Su, Cheng Yang, Yujiu Yang, Deng Cai
- Abstract summary: We investigate whether incorporating broad-coverage generalist instruction tuning can contribute to building a specialist model.
Our experiments assess four target tasks with distinct coverage levels.
The effect is particularly pronounced when the amount of task-specific training data is limited.
- Score: 58.422495509760154
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The potential of large language models (LLMs) to simultaneously perform a
wide range of natural language processing (NLP) tasks has been the subject of
extensive research. Although instruction tuning has proven to be a
data-efficient method for transforming LLMs into such generalist models, their
performance still lags behind specialist models trained exclusively for
specific tasks. In this paper, we investigate whether incorporating
broad-coverage generalist instruction tuning can contribute to building a
specialist model. We hypothesize that its efficacy depends on task specificity
and skill requirements. Our experiments assess four target tasks with distinct
coverage levels, revealing that integrating generalist instruction tuning
consistently enhances model performance when the task coverage is broad. The
effect is particularly pronounced when the amount of task-specific training
data is limited. Further investigation into three target tasks focusing on
different capabilities demonstrates that generalist instruction tuning improves
understanding and reasoning abilities. However, for tasks requiring factual
knowledge, generalist data containing hallucinatory information may negatively
affect the model's performance. Overall, our work provides a systematic guide
for developing specialist models with general instruction tuning. Our code and
other related resources can be found at
https://github.com/DavidFanzz/Generalist_or_Specialist.
Related papers
- Layer by Layer: Uncovering Where Multi-Task Learning Happens in Instruction-Tuned Large Language Models [22.676688441884465]
Fine-tuning pre-trained large language models (LLMs) on a diverse array of tasks has become a common approach for building models.
This study investigates the task-specific information encoded in pre-trained LLMs and the effects of instruction tuning on their representations.
arXiv Detail & Related papers (2024-10-25T23:38:28Z) - SwitchCIT: Switching for Continual Instruction Tuning of Large Language Models [14.085371250265224]
Large language models (LLMs) have exhibited impressive capabilities in various domains, particularly in general language understanding.
However these models, trained on massive text data, may not be finely optimized for specific tasks triggered by instructions.
This work addresses the catastrophic forgetting in continual instruction learning for LLMs through a switching mechanism for routing computations to parameter-efficient tuned models.
arXiv Detail & Related papers (2024-07-16T14:37:33Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - GLiNER multi-task: Generalist Lightweight Model for Various Information Extraction Tasks [0.0]
We will introduce a new kind of GLiNER model that can be used for various information extraction tasks while being a small encoder model.
Our model achieved SoTA performance on zero-shot NER benchmarks and leading performance on question-answering, summarization and relation extraction tasks.
arXiv Detail & Related papers (2024-06-14T13:54:29Z) - Unveiling the Generalization Power of Fine-Tuned Large Language Models [81.70754292058258]
We investigate whether fine-tuning affects the intrinsic generalization ability intrinsic to Large Language Models (LLMs)
Our main findings reveal that models fine-tuned on generation and classification tasks exhibit dissimilar behaviors in generalizing to different domains and tasks.
We observe that integrating the in-context learning strategy during fine-tuning on generation tasks can enhance the model's generalization ability.
arXiv Detail & Related papers (2024-03-14T08:18:59Z) - Knowledge Plugins: Enhancing Large Language Models for Domain-Specific
Recommendations [50.81844184210381]
We propose a general paradigm that augments large language models with DOmain-specific KnowledgE to enhance their performance on practical applications, namely DOKE.
This paradigm relies on a domain knowledge extractor, working in three steps: 1) preparing effective knowledge for the task; 2) selecting the knowledge for each specific sample; and 3) expressing the knowledge in an LLM-understandable way.
arXiv Detail & Related papers (2023-11-16T07:09:38Z) - Pre-training Multi-task Contrastive Learning Models for Scientific
Literature Understanding [52.723297744257536]
Pre-trained language models (LMs) have shown effectiveness in scientific literature understanding tasks.
We propose a multi-task contrastive learning framework, SciMult, to facilitate common knowledge sharing across different literature understanding tasks.
arXiv Detail & Related papers (2023-05-23T16:47:22Z) - Explaining the Effectiveness of Multi-Task Learning for Efficient
Knowledge Extraction from Spine MRI Reports [2.5953185061765884]
We show that a single multi-tasking model can match the performance of task specific models.
We validate our observations on our internal radiologist-annotated datasets on the cervical and lumbar spine.
arXiv Detail & Related papers (2022-05-06T01:51:19Z) - Knowledge-driven Data Construction for Zero-shot Evaluation in
Commonsense Question Answering [80.60605604261416]
We propose a novel neuro-symbolic framework for zero-shot question answering across commonsense tasks.
We vary the set of language models, training regimes, knowledge sources, and data generation strategies, and measure their impact across tasks.
We show that, while an individual knowledge graph is better suited for specific tasks, a global knowledge graph brings consistent gains across different tasks.
arXiv Detail & Related papers (2020-11-07T22:52:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.