論文の概要: Integrating Language Models into Direct Speech Translation: An
Inference-Time Solution to Control Gender Inflection
- arxiv url: http://arxiv.org/abs/2310.15752v1
- Date: Tue, 24 Oct 2023 11:55:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 19:01:12.787353
- Title: Integrating Language Models into Direct Speech Translation: An
Inference-Time Solution to Control Gender Inflection
- Title(参考訳): 言語モデルと直接音声翻訳の統合:ジェンダーの抑揚を制御する推論時間解法
- Authors: Dennis Fucci, Marco Gaido, Sara Papi, Mauro Cettolo, Matteo Negri,
Luisa Bentivogli
- Abstract要約: 本稿では,音声翻訳における話者関連性摂動を制御するための最初の推論時解を提案する。
我々のソリューションは、STデコーダによって暗黙的に学習された(バイアス付き)内部言語モデル(LM)を、性別固有の外部LMに部分的に置き換える。
- 参考スコア(独自算出の注目度): 23.993869026482415
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: When translating words referring to the speaker, speech translation (ST)
systems should not resort to default masculine generics nor rely on potentially
misleading vocal traits. Rather, they should assign gender according to the
speakers' preference. The existing solutions to do so, though effective, are
hardly feasible in practice as they involve dedicated model re-training on
gender-labeled ST data. To overcome these limitations, we propose the first
inference-time solution to control speaker-related gender inflections in ST.
Our approach partially replaces the (biased) internal language model (LM)
implicitly learned by the ST decoder with gender-specific external LMs.
Experiments on en->es/fr/it show that our solution outperforms the base models
and the best training-time mitigation strategy by up to 31.0 and 1.6 points in
gender accuracy, respectively, for feminine forms. The gains are even larger
(up to 32.0 and 3.4) in the challenging condition where speakers' vocal traits
conflict with their gender.
- Abstract(参考訳): 話者を参照する単語を翻訳する場合、音声翻訳(st)システムはデフォルトの男性ジェネリクスに頼らず、潜在的に誤解を招く声質に頼るべきではない。
むしろ、話者の好みに応じて性別を割り当てるべきである。
そのための既存のソリューションは、効果的ではあるが、実際には実現不可能ではない。
提案手法は,STデコーダが暗黙的に学習した(バイアス付き)内部言語モデル(LM)を,ジェンダー固有の外部LMに置き換えるものである。
en->es/fr/it実験では,女性型において,基礎モデルと最良のトレーニング時間緩和戦略をそれぞれ31.0点,1.6点に上回った。
話者の発声特性が性別と矛盾する困難な状況下では、さらに利益が(最大32.0と3.4まで)大きくなる。
関連論文リスト
- The Root Shapes the Fruit: On the Persistence of Gender-Exclusive Harms in Aligned Language Models [58.130894823145205]
我々はトランスジェンダー、ノンバイナリ、その他のジェンダー・ディバースのアイデンティティを中心とし、アライメント手順が既存のジェンダー・ディバースバイアスとどのように相互作用するかを検討する。
以上の結果から,DPO対応モデルは特に教師付き微調整に敏感であることが示唆された。
DPOとより広範なアライメントプラクティスに合わせたレコメンデーションで締めくくります。
論文 参考訳(メタデータ) (2024-11-06T06:50:50Z) - Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
既存の機械翻訳の性別バイアス評価は主に男性と女性の性別に焦点を当てている。
本研究では,AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words) のベンチマークを示す。
本研究では,感情的態度スコア(EAS)に基づく性別バイアス評価手法を提案する。
論文 参考訳(メタデータ) (2024-07-23T08:13:51Z) - Twists, Humps, and Pebbles: Multilingual Speech Recognition Models Exhibit Gender Performance Gaps [25.95711246919163]
現在の自動音声認識(ASR)モデルは、多くの言語やタスクでかなりの変更を加えることなく使用できるように設計されている。
本研究では,3つのデータセット上で広く使用されている2つの多言語ASRモデルの性能を体系的に評価する。
以上の結果から,言語やモデルによって異なる傾向がみられた。
論文 参考訳(メタデータ) (2024-02-28T00:24:29Z) - Disclosure and Mitigation of Gender Bias in LLMs [64.79319733514266]
大規模言語モデル(LLM)はバイアス応答を生成することができる。
条件生成に基づく間接探索フレームワークを提案する。
LLMにおける明示的・暗黙的な性バイアスを明らかにするための3つの戦略を探求する。
論文 参考訳(メタデータ) (2024-02-17T04:48:55Z) - Probing Explicit and Implicit Gender Bias through LLM Conditional Text
Generation [64.79319733514266]
大規模言語モデル(LLM)はバイアスと有害な応答を生成する。
本研究では,あらかじめ定義されたジェンダーフレーズやステレオタイプを必要としない条件付きテキスト生成機構を提案する。
論文 参考訳(メタデータ) (2023-11-01T05:31:46Z) - How To Build Competitive Multi-gender Speech Translation Models For
Controlling Speaker Gender Translation [21.125217707038356]
発音性言語から文法性言語に翻訳する場合、生成された翻訳は、話者を参照する者を含む様々な単語に対して、明確なジェンダー代入を必要とする。
このような偏見や包括的行動を避けるために、話者の性別に関する外部から提供されたメタデータによって、話者関連表現の性別割当を導出すべきである。
本稿では、話者のジェンダーメタデータを単一の「マルチジェンダー」ニューラルSTモデルに統合し、維持しやすくすることで、同じ結果を達成することを目的とする。
論文 参考訳(メタデータ) (2023-10-23T17:21:32Z) - No Pitch Left Behind: Addressing Gender Unbalance in Automatic Speech
Recognition through Pitch Manipulation [20.731375136671605]
本稿では,基本周波数(f0)とホルマントを操作するデータ拡張手法を提案する。
この手法は、表現不足の女性話者の声をシミュレートすることにより、性別間のデータ不均衡を低減する。
自発性英語音声の実験では,女性話者の発話に対して,WERの相対的な改善が9.87%に達することが示された。
論文 参考訳(メタデータ) (2023-10-10T12:55:22Z) - Gender Lost In Translation: How Bridging The Gap Between Languages
Affects Gender Bias in Zero-Shot Multilingual Translation [12.376309678270275]
並列データが利用できない言語間のギャップを埋めることは、多言語NTTの性別バイアスに影響を与える。
本研究では, 言語に依存しない隠蔽表現が, ジェンダーの保存能力に及ぼす影響について検討した。
言語に依存しない表現は、ゼロショットモデルの男性バイアスを緩和し、ブリッジ言語におけるジェンダーインフレクションのレベルが増加し、話者関連性合意に対するより公平なジェンダー保存に関するゼロショット翻訳を超越することがわかった。
論文 参考訳(メタデータ) (2023-05-26T13:51:50Z) - Improving Gender Fairness of Pre-Trained Language Models without
Catastrophic Forgetting [88.83117372793737]
元のトレーニングデータに情報を埋め込むことは、モデルの下流のパフォーマンスを大きなマージンで損なう可能性がある。
本稿では,GEnder Equality Prompt(GEEP)を提案する。
論文 参考訳(メタデータ) (2021-10-11T15:52:16Z) - Breeding Gender-aware Direct Speech Translation Systems [14.955696163410254]
性別認識型stソリューションは強い-しかし性別認識型stモデルを大きく上回る可能性がある。
ジェンダーマーク付き単語の翻訳は、全体的な翻訳品質を維持しながら、精度が最大30ポイント向上する。
論文 参考訳(メタデータ) (2020-12-09T10:18:03Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
機械学習モデルは、性別に偏ったテキストでトレーニングする際に、社会的に望ましくないパターンを不注意に学習することができる。
本稿では,テキスト中の性バイアスを複数の実用的・意味的な次元に沿って分解する一般的な枠組みを提案する。
このきめ細かいフレームワークを用いて、8つの大規模データセットにジェンダー情報を自動的にアノテートする。
論文 参考訳(メタデータ) (2020-05-01T21:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。