論文の概要: Addressing speaker gender bias in large scale speech translation systems
- arxiv url: http://arxiv.org/abs/2501.05989v1
- Date: Fri, 10 Jan 2025 14:20:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:28:28.823218
- Title: Addressing speaker gender bias in large scale speech translation systems
- Title(参考訳): 大規模音声翻訳システムにおける話者性バイアスの対応
- Authors: Shubham Bansal, Vikas Joshi, Harveen Chadha, Rupeshkumar Mehta, Jinyu Li,
- Abstract要約: 本研究では,音声翻訳(ST)システムにおける話者性バイアスの問題に対処する。
我々は、話者の性別に基づいて翻訳をコスト効率よく修正するために、Large Language Models (LLMs) を用いている。
女性話者の翻訳能力は, ベースラインや大規模STシステムと比較して70%向上した。
- 参考スコア(独自算出の注目度): 20.698663542717544
- License:
- Abstract: This study addresses the issue of speaker gender bias in Speech Translation (ST) systems, which can lead to offensive and inaccurate translations. The masculine bias often found in large-scale ST systems is typically perpetuated through training data derived from Machine Translation (MT) systems. Our approach involves two key steps. First, we employ Large Language Models (LLMs) to rectify translations based on the speaker's gender in a cost-effective manner. Second, we fine-tune the ST model with the corrected data, enabling the model to generate gender-specific translations directly from audio cues, without the need for explicit gender input. Additionally, we propose a three-mode fine-tuned model for scenarios where the speaker's gender is either predefined or should not be inferred from speech cues. We demonstrate a 70% improvement in translations for female speakers compared to our baseline and other large-scale ST systems, such as Seamless M4T and Canary, on the MuST-SHE test set.
- Abstract(参考訳): 本研究では、音声翻訳システム(ST)における話者性バイアスの問題に対処し、攻撃的かつ不正確な翻訳につながる可能性がある。
大規模なSTシステムでしばしば見られる男性バイアスは、機械翻訳(MT)システムから派生したトレーニングデータを通じて永続される。
私たちのアプローチには2つの重要なステップがあります。
まず,Large Language Models (LLMs) を用いて,話者の性別に基づく翻訳をコスト効率よく修正する。
第2に、修正されたデータでSTモデルを微調整し、明示的な性別入力を必要とせずに、音声キューから直接性特化翻訳を生成する。
さらに, 話者の性別が事前に定義されているか, 音声の手がかりから推測すべきでないシナリオに対して, 3モードの微調整モデルを提案する。
本研究では,MST-SHE テストセット上で,M4T や Canary などの大規模STシステムと比較して,女性話者の翻訳能力が70%向上したことを示す。
関連論文リスト
- Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
既存の機械翻訳の性別バイアス評価は主に男性と女性の性別に焦点を当てている。
本研究では,AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words) のベンチマークを示す。
本研究では,感情的態度スコア(EAS)に基づく性別バイアス評価手法を提案する。
論文 参考訳(メタデータ) (2024-07-23T08:13:51Z) - An Initial Investigation of Language Adaptation for TTS Systems under Low-resource Scenarios [76.11409260727459]
本稿では,最近のSSLベースの多言語TSシステムであるZMM-TTSの言語適応性について検討する。
本研究では,事前学習言語と対象言語との音声学的な類似性が,対象言語の適応性能に影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2024-06-13T08:16:52Z) - Prosody in Cascade and Direct Speech-to-Text Translation: a case study
on Korean Wh-Phrases [79.07111754406841]
本研究は,韻律が重要な役割を果たす発話を明瞭にするための直接S2TTシステムの能力を評価するために,コントラスト評価を用いることを提案する。
本結果は,カスケード翻訳モデルよりも直接翻訳システムの価値を明確に示すものである。
論文 参考訳(メタデータ) (2024-02-01T14:46:35Z) - Integrating Language Models into Direct Speech Translation: An
Inference-Time Solution to Control Gender Inflection [23.993869026482415]
本稿では,音声翻訳における話者関連性摂動を制御するための最初の推論時解を提案する。
我々のソリューションは、STデコーダによって暗黙的に学習された(バイアス付き)内部言語モデル(LM)を、性別固有の外部LMに部分的に置き換える。
論文 参考訳(メタデータ) (2023-10-24T11:55:16Z) - How To Build Competitive Multi-gender Speech Translation Models For
Controlling Speaker Gender Translation [21.125217707038356]
発音性言語から文法性言語に翻訳する場合、生成された翻訳は、話者を参照する者を含む様々な単語に対して、明確なジェンダー代入を必要とする。
このような偏見や包括的行動を避けるために、話者の性別に関する外部から提供されたメタデータによって、話者関連表現の性別割当を導出すべきである。
本稿では、話者のジェンダーメタデータを単一の「マルチジェンダー」ニューラルSTモデルに統合し、維持しやすくすることで、同じ結果を達成することを目的とする。
論文 参考訳(メタデータ) (2023-10-23T17:21:32Z) - Speech-to-Speech Translation with Discrete-Unit-Based Style Transfer [53.72998363956454]
個別の自己教師付き表現を用いた音声音声合成(S2ST)は顕著な精度を達成している。
高品質な話者並列データの不足は、翻訳中にスタイル転送を学習する上での課題となる。
我々は、個別の自己教師付き音声表現と音色単位に基づいて、スタイル変換機能を備えたS2STパイプラインを設計する。
論文 参考訳(メタデータ) (2023-09-14T09:52:08Z) - Target-Agnostic Gender-Aware Contrastive Learning for Mitigating Bias in
Multilingual Machine Translation [28.471506840241602]
ジェンダーバイアスは機械翻訳において重要な問題であり、バイアス軽減技術の研究が進行中である。
本稿では,新しいアプローチに基づくバイアス緩和手法を提案する。
Gender-Aware Contrastive Learning, GACLは、文脈性情報を非明示性単語の表現にエンコードする。
論文 参考訳(メタデータ) (2023-05-23T12:53:39Z) - Simple and Effective Unsupervised Speech Translation [68.25022245914363]
ラベル付きデータなしで音声翻訳システムを構築するための,シンプルで効果的な手法について検討する。
事前学習された音声モデルに対する教師なし領域適応手法を提案する。
実験により、教師なし音声からテキストへの翻訳は、それまでの教師なし状態よりも優れていたことが示されている。
論文 参考訳(メタデータ) (2022-10-18T22:26:13Z) - Breeding Gender-aware Direct Speech Translation Systems [14.955696163410254]
性別認識型stソリューションは強い-しかし性別認識型stモデルを大きく上回る可能性がある。
ジェンダーマーク付き単語の翻訳は、全体的な翻訳品質を維持しながら、精度が最大30ポイント向上する。
論文 参考訳(メタデータ) (2020-12-09T10:18:03Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
機械学習モデルは、性別に偏ったテキストでトレーニングする際に、社会的に望ましくないパターンを不注意に学習することができる。
本稿では,テキスト中の性バイアスを複数の実用的・意味的な次元に沿って分解する一般的な枠組みを提案する。
このきめ細かいフレームワークを用いて、8つの大規模データセットにジェンダー情報を自動的にアノテートする。
論文 参考訳(メタデータ) (2020-05-01T21:23:20Z) - Reducing Gender Bias in Neural Machine Translation as a Domain
Adaptation Problem [21.44025591721678]
NLPタスクのトレーニングデータは、男性よりも女性に言及する文が少ないという性別バイアスを呈することが多い。
最近のWinoMTチャレンジセットでは、この効果を直接測定することができます。
私たちは、信頼できる性別バランスの例の小さなセットでトランスファーラーニングを使用します。
論文 参考訳(メタデータ) (2020-04-09T11:55:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。