論文の概要: E-Sparse: Boosting the Large Language Model Inference through Entropy-based N:M Sparsity
- arxiv url: http://arxiv.org/abs/2310.15929v2
- Date: Fri, 22 Mar 2024 09:18:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 22:40:07.979465
- Title: E-Sparse: Boosting the Large Language Model Inference through Entropy-based N:M Sparsity
- Title(参考訳): E-Sparse:エントロピーベースのN:Mスパリティによる大規模言語モデル推論の強化
- Authors: Yun Li, Lin Niu, Xipeng Zhang, Kai Liu, Jianchen Zhu, Zhanhui Kang,
- Abstract要約: 隠れ状態特徴の情報エントロピーをプルーニング計量設計、すなわちE-Sparseに導入する。
E-Sparseはチャネルの重要性を活用するために情報豊かさを使用し、さらにいくつかの新しいテクニックを取り入れて効果を発揮させる。
E-Sparseは、高密度モデル(最大1.53X)に対するモデル推論を著しく高速化し、大きなメモリ節約(最大43.52%)を得ることができ、精度の低下を許容できる。
- 参考スコア(独自算出の注目度): 6.434967516411846
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional pruning methods are known to be challenging to work in Large Language Models (LLMs) for Generative AI because of their unaffordable training process and large computational demands. For the first time, we introduce the information entropy of hidden state features into a pruning metric design, namely E-Sparse, to improve the accuracy of N:M sparsity on LLM. E-Sparse employs the information richness to leverage the channel importance, and further incorporates several novel techniques to put it into effect: (1) it introduces information entropy to enhance the significance of parameter weights and input feature norms as a novel pruning metric, and performs N:M sparsity without modifying the remaining weights. (2) it designs global naive shuffle and local block shuffle to quickly optimize the information distribution and adequately cope with the impact of N:M sparsity on LLMs' accuracy. E-Sparse is implemented as a Sparse-GEMM on FasterTransformer and runs on NVIDIA Ampere GPUs. Extensive experiments on the LLaMA family and OPT models show that E-Sparse can significantly speed up the model inference over the dense model (up to 1.53X) and obtain significant memory saving (up to 43.52%), with acceptable accuracy loss.
- Abstract(参考訳): 従来のプルーニング手法は、予測不可能なトレーニングプロセスと大規模な計算要求のため、ジェネレーティブAIのためのLarge Language Models(LLM)で作業することが難しいことが知られている。
LLMにおけるN:M間隔の精度を向上させるため,隠れ状態特徴の情報エントロピーをプルーニング計量設計(E-Sparse)に導入した。
E-Sparseは、チャネルの重要性を活用するために情報豊かさを採用し、(1)パラメータウェイトと入力特徴ノルムの重要度を高めるために情報エントロピーを導入し、残りのウェイトを変更することなくN:Mスパシティを実行する。
2) グローバルなナイーブシャッフルとローカルブロックシャッフルを設計し,情報配信を迅速に最適化し,N:M空間がLLMの精度に与える影響を適切に対処する。
E-SparseはFasterTransformer上のSparse-GEMMとして実装され、NVIDIA Ampere GPU上で動作する。
LLaMAファミリーとOPTモデルの大規模な実験により、E-Sparseは高密度モデル(最大1.53X)よりもモデル推論を著しく高速化し、大きなメモリ節約(最大43.52%)を得ることができ、精度の低下を許容できることが示された。
関連論文リスト
- SLiM: One-shot Quantized Sparse Plus Low-rank Approximation of LLMs [2.7624021966289605]
大規模言語モデル(LLM)は、自然言語の理解と生成タスクに革命をもたらした。
LLMは、大きなパラメータサイズのため、メモリ消費が高く、推論時間が遅い。
本稿では,1ショットの量子スパースプラス低ランク近似を用いたLEMの圧縮手法であるSLiMを紹介する。
論文 参考訳(メタデータ) (2024-10-12T18:36:07Z) - TernaryLLM: Ternarized Large Language Model [29.29122031050894]
大規模言語モデル(LLM)は自然言語処理(NLP)タスクにおいて顕著なパフォーマンスを達成した。
本稿では、Dual Learnable Ternarization (DLT)を導入し、スケールとシフトの両方を学習可能にする。
また、極低ビット量子化で失われた情報を復元するために、OFF(Outlier-Friendly Feature Knowledge Distillation)を提案する。
論文 参考訳(メタデータ) (2024-06-11T11:40:12Z) - Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment [56.44025052765861]
大規模言語モデル(LLM)は自然言語処理(NLP)に革命をもたらしたが、そのサイズは計算のボトルネックを生み出している。
そこで本研究では,高性能LLMの高精度かつ疎結合な基本バージョンを作成するための新しいアプローチを提案する。
スパース量子化LLaMAの最大8.6倍のCPU上での総高速化を示す。
論文 参考訳(メタデータ) (2024-05-06T16:03:32Z) - Not All Attention is Needed: Parameter and Computation Efficient Transfer Learning for Multi-modal Large Language Models [73.48675708831328]
MLLM(Multi-modal Large Language Models)のための新しいパラメータと計算効率のチューニング手法を提案する。
The Efficient Attention Skipping (EAS) method evaluate the attention redundancy and skips the less important MHAs to speed up inference。
実験により、EASは高い性能とパラメータ効率を維持するだけでなく、推論速度を大幅に高速化することが示された。
論文 参考訳(メタデータ) (2024-03-22T14:20:34Z) - Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark [166.40879020706151]
本稿では、微調整時のメモリコスト低減のためのソリューションとして、BPフリーゼロオーダー最適化(ZO)への移行を提案する。
従来のZO-SGD法とは異なり、我々の研究はより広い範囲のZO最適化手法に探索を広げる。
本研究は,タスクアライメントの重要性,前方勾配法の役割,アルゴリズムの複雑さと微調整性能のバランスについて,これまで見過ごされてきた最適化原理を明らかにした。
論文 参考訳(メタデータ) (2024-02-18T14:08:48Z) - Towards Efficient Vision-Language Tuning: More Information Density, More Generalizability [73.34532767873785]
本稿では,行列が特定の特徴空間に強く属しているかを示すために,情報密度(ID)の概念を提案する。
Dense Information Prompt (DIP)を導入し、情報密度を高め、一般化を改善する。
DIPは、調整可能なパラメータの数と必要なストレージスペースを大幅に減らし、リソース制約のある設定で特に有利になる。
論文 参考訳(メタデータ) (2023-12-17T20:42:43Z) - Sparse Fine-tuning for Inference Acceleration of Large Language Models [48.285897264669984]
大規模言語モデル(LLM)の精密細粒度調整の問題点について考察する。
蒸留型損失の詳細な研究を行い,L2に基づく蒸留手法をSquareHeadと呼ぶ。
MPTテキスト生成では、細かな微調整が精度低下なしに75%の間隔に到達できることを初めて示す。
論文 参考訳(メタデータ) (2023-10-10T18:28:38Z) - LUT-GEMM: Quantized Matrix Multiplication based on LUTs for Efficient Inference in Large-Scale Generative Language Models [9.727062803700264]
量子化行列乗算のための効率的なカーネルであるLUT-GEMMを紹介する。
LUT-GEMMは資源集約化プロセスを取り除き、計算コストを削減する。
我々は,3ビット量子化を用いたOPT-175Bモデルに適用した場合,LUT-GEMMはトークン生成遅延を大幅に高速化することを示した。
論文 参考訳(メタデータ) (2022-06-20T03:48:17Z) - NxMTransformer: Semi-Structured Sparsification for Natural Language
Understanding via ADMM [16.464030458567187]
我々はNxMTransformerと呼ばれる新しい学習フレームワークを導入し、事前訓練された言語モデル上でNxM半構造化空間を誘導する。
我々は,制約付き最適化問題としてNxM空間を定式化し,下流タスクの最適化に Alternating Direction Method of Multipliers (ADMM) を用いることを提案する。
提案手法は,GLUEスコアの1.7ポイントの精度を現行の手法よりも高い精度で達成できる。
論文 参考訳(メタデータ) (2021-10-28T17:43:06Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
トランスフォーマーベースの事前学習言語モデルは、パラメータ容量が大きいため、ほとんどのNLPタスクにおいて優れた性能を実現することができるが、計算コストも大きい。
スパースアクティベーション現象に基づく条件計算により,大規模モデル推論を高速化する。
そこで本研究では,モデルサイズが等しいMoE(Mix-of-experts)バージョン,すなわちMoEficationに変換することを提案する。
論文 参考訳(メタデータ) (2021-10-05T02:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。