論文の概要: Pushing the Limits of Low-Bit Optimizers: A Focus on EMA Dynamics
- arxiv url: http://arxiv.org/abs/2505.00347v2
- Date: Mon, 09 Jun 2025 13:49:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 16:33:10.04127
- Title: Pushing the Limits of Low-Bit Optimizers: A Focus on EMA Dynamics
- Title(参考訳): 低ビットオプティマイザの限界を押し上げる:EMAダイナミクスに着目して
- Authors: Cong Xu, Wenbin Liang, Mo Yu, Anan Liu, Ke-Yue Zhang, Shunli Wang, Lizhuang Ma, Jianyong Wang, Jun Wang, Wei Zhang,
- Abstract要約: ステートフル(例えばアダム)は、最適収束を達成するために、モデルサイズを2倍も補助情報を維持する。
SOLOにより、アダムスタイルは3ビットまたは2ビットの精度で量子化された状態を維持することができる。
したがって、SOLOはAdamスタイルにシームレスに適用でき、精度の低下を最小限に抑えることができる。
- 参考スコア(独自算出の注目度): 64.62231094774211
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid scaling of models has led to prohibitively high training and fine-tuning costs. A major factor accounting for memory consumption is the widespread use of stateful optimizers (e.g., Adam), which maintain auxiliary information of even 2x the model size in order to achieve optimal convergence. We therefore present SOLO in this work to spawn a novel type of optimizer that requires an extremely light memory footprint. While previous efforts have achieved certain success in 8-bit or 4-bit cases, SOLO enables Adam-style optimizers to maintain quantized states with precision as low as 3 bits, or even 2 bits. This immense progress is due to the identification and resolution of two key challenges: the signal swamping problem in unsigned quantization that results in unchanged state dynamics, and the increased gradient variance in signed quantization that leads to incorrect descent directions. The theoretical analysis suggests a tailored logarithmic quantization for the former and a precision-specific momentum hyperparameter for the latter. SOLO can thus be seamlessly applied to Adam-style optimizers, leading to substantial memory savings with minimal accuracy loss.
- Abstract(参考訳): モデルの急激なスケーリングは、厳格に高いトレーニングと微調整コストにつながった。
メモリ消費を考慮に入れている主な要因はステートフルなオプティマイザ(例えばAdam)の普及である。
そこで本研究では,メモリフットプリントが極めて少ない新しいタイプのオプティマイザを創出するためにSOLOを提案する。
以前の試みは8ビットまたは4ビットのケースで一定の成功を収めたが、SOLOはAdamスタイルのオプティマイザが3ビットまたは2ビットの精度で量子化された状態を維持することを可能にする。
この大きな進歩は、2つの重要な課題の特定と解決である: 符号なし量子化における信号湿潤問題(状態ダイナミクスが変化しない)と符号付き量子化における勾配のばらつき(誤った降下方向につながる)である。
この理論解析は、前者の対数量子化と後者の精度特異的運動量ハイパーパラメータの調整を示唆している。
したがって、SOLOはAdamスタイルのオプティマイザにシームレスに適用でき、精度の低下を最小限に抑えることができる。
関連論文リスト
- ParetoQ: Scaling Laws in Extremely Low-bit LLM Quantization [58.84018707089315]
本稿では,1ビット,1.58ビット,2ビット,3ビット,4ビットの量子化設定に対して厳密な比較を行う統一フレームワークを提案する。
3次、2ビット、3ビット量子化は、サイズと精度のトレードオフにおいて同等のパフォーマンスを維持していることを示す。
ハードウェアの制約を考慮すると、2ビット量子化はメモリの削減とスピードアップに有望な可能性を秘めている。
論文 参考訳(メタデータ) (2025-02-04T18:59:26Z) - Oscillations Make Neural Networks Robust to Quantization [0.16385815610837165]
量子化アウェアトレーニング(QAT)における振動は,STE(Straight-Through Estimator)によって引き起こされる望ましくない人工物であることを示す。
量子化を改善するために振動を誘導する新しい正則化法を提案する。
論文 参考訳(メタデータ) (2025-02-01T16:39:58Z) - GAQAT: gradient-adaptive quantization-aware training for domain generalization [54.31450550793485]
そこで本研究では,DGのためのGAQAT(Gradient-Adaptive Quantization-Aware Training)フレームワークを提案する。
我々のアプローチは、低精度量子化におけるスケール・グラディエント・コンフリクト問題を特定することから始まる。
GAQATフレームワークの有効性を実験により検証した。
論文 参考訳(メタデータ) (2024-12-07T06:07:21Z) - Joint Pruning and Channel-wise Mixed-Precision Quantization for Efficient Deep Neural Networks [10.229120811024162]
ディープニューラルネットワーク(DNN)は、エッジデバイスへのデプロイメントに重大な課題をもたらす。
この問題に対処する一般的なアプローチは、プルーニングと混合精度量子化である。
そこで本研究では,軽量な勾配探索を用いて共同で適用するための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-01T08:07:02Z) - Gradient-based Automatic Mixed Precision Quantization for Neural Networks On-Chip [0.9187138676564589]
本稿では,革新的な量子化学習手法である高粒度量子化(HGQ)を提案する。
HGQは、勾配降下によって最適化できるようにすることで、重量当たりおよび活動当たりの精度を微調整する。
このアプローチは、演算演算が可能なハードウェア上で、超低レイテンシと低電力ニューラルネットワークを実現する。
論文 参考訳(メタデータ) (2024-05-01T17:18:46Z) - DB-LLM: Accurate Dual-Binarization for Efficient LLMs [83.70686728471547]
大規模言語モデル(LLM)は自然言語処理の分野を著しく進歩させてきた。
既存の超低ビット量子化は、常に深刻な精度低下を引き起こす。
本稿では,LLM,すなわちDB-LLMのための新しいデュアルバイナライズ手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T09:04:30Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
エッジデバイス上でハードウェア対応の混合精度量子化を行うOn-Chipハードウェア・アウェア量子化フレームワークを提案する。
このパイプラインは、量子化プロセスが量子化演算子の実際のハードウェア効率を知覚することを可能にする。
精度測定のために,マルチチップシナリオにおける演算子の精度への影響を効果的に推定するMask-Guided Quantization Estimation技術を提案する。
論文 参考訳(メタデータ) (2023-09-05T04:39:34Z) - Quantized Neural Networks for Low-Precision Accumulation with Guaranteed
Overflow Avoidance [68.8204255655161]
本稿では,推定時のアキュムレータの精度を下げる際に,数値オーバーフローを回避する量子化学習アルゴリズムを提案する。
本手法は,浮動小数点点ベースラインに対するモデル精度を維持しつつ,アキュムレータの精度を低減できることを示す。
論文 参考訳(メタデータ) (2023-01-31T02:46:57Z) - VS-Quant: Per-vector Scaled Quantization for Accurate Low-Precision
Neural Network Inference [7.886868529510128]
量子化は、訓練されたモデルの浮動小数点重みとアクティベーションをスケールファクターを用いて低ビット幅整数値にマッピングする。
過剰な量子化、過度に精度を低下させると、精度が低下する。
ベクトル単位のスケールファクタは、2レベル量子化スキームを使用する場合、低ビット幅の整数で実装できる。
論文 参考訳(メタデータ) (2021-02-08T19:56:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。