Mixture of Tokens: Continuous MoE through Cross-Example Aggregation
- URL: http://arxiv.org/abs/2310.15961v2
- Date: Tue, 24 Sep 2024 14:40:57 GMT
- Title: Mixture of Tokens: Continuous MoE through Cross-Example Aggregation
- Authors: Szymon Antoniak, Michał Krutul, Maciej Pióro, Jakub Krajewski, Jan Ludziejewski, Kamil Ciebiera, Krystian Król, Tomasz Odrzygóźdź, Marek Cygan, Sebastian Jaszczur,
- Abstract summary: Mixture of Experts (MoE) models are pushing the boundaries of language and vision tasks.
MoT is a simple, continuous architecture that is capable of scaling the number of parameters similarly to sparse MoE models.
Our best models achieve a 3x increase in training speed over dense Transformer models in language pretraining.
- Score: 0.7880651741080428
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mixture of Experts (MoE) models based on Transformer architecture are pushing the boundaries of language and vision tasks. The allure of these models lies in their ability to substantially increase the parameter count without a corresponding increase in FLOPs. Most widely adopted MoE models are discontinuous with respect to their parameters - often referred to as sparse. At the same time, existing continuous MoE designs either lag behind their sparse counterparts or are incompatible with autoregressive decoding. Motivated by the observation that the adaptation of fully continuous methods has been an overarching trend in deep learning, we develop Mixture of Tokens (MoT), a simple, continuous architecture that is capable of scaling the number of parameters similarly to sparse MoE models. Unlike conventional methods, MoT assigns mixtures of tokens from different examples to each expert. This architecture is fully compatible with autoregressive training and generation. Our best models not only achieve a 3x increase in training speed over dense Transformer models in language pretraining but also match the performance of state-of-the-art MoE architectures. Additionally, a close connection between MoT and MoE is demonstrated through a novel technique we call transition tuning.
Related papers
- Scaling Diffusion Language Models via Adaptation from Autoregressive Models [105.70889434492143]
Diffusion Language Models (DLMs) have emerged as a promising new paradigm for text generative modeling.
We show that we can convert AR models ranging from 127M to 7B parameters into diffusion models DiffuGPT and DiffuLLaMA, using less than 200B tokens for training.
Our experimental results reveal that these models outperform earlier DLMs and are competitive with their AR counterparts.
arXiv Detail & Related papers (2024-10-23T14:04:22Z) - Layerwise Recurrent Router for Mixture-of-Experts [42.36093735411238]
Mixture-of-Experts (MoE) architecture stands out for its ability to scale model size without significantly increasing training costs.
Current MoE models often display parameter inefficiency.
We introduce the Layerwise Recurrent Router for Mixture-of-Experts (RMoE)
arXiv Detail & Related papers (2024-08-13T10:25:13Z) - DiM-Gesture: Co-Speech Gesture Generation with Adaptive Layer Normalization Mamba-2 framework [2.187990941788468]
generative model crafted to create highly personalized 3D full-body gestures solely from raw speech audio.
Model integrates a Mamba-based fuzzy feature extractor with a non-autoregressive Adaptive Layer Normalization (AdaLN) Mamba-2 diffusion architecture.
arXiv Detail & Related papers (2024-08-01T08:22:47Z) - Pruning Large Language Models with Semi-Structural Adaptive Sparse Training [17.381160429641316]
We propose a pruning pipeline for semi-structured sparse models via retraining, termed Adaptive Sparse Trainer (AST)
AST transforms dense models into sparse ones by applying decay to masked weights while allowing the model to adaptively select masks throughout the training process.
Our work demonstrates the feasibility of deploying semi-structured sparse large language models and introduces a novel method for achieving highly compressed models.
arXiv Detail & Related papers (2024-07-30T06:33:44Z) - LLaMA-MoE: Building Mixture-of-Experts from LLaMA with Continual Pre-training [21.359073227913303]
Training MoE from scratch in a large-scale setting still suffers from data-hungry and instability problems.
Motivated by this limit, we investigate building MoE models from existing dense large language models.
Our LLaMA-MoE models significantly outperform dense models that contain similar activation parameters.
arXiv Detail & Related papers (2024-06-24T11:43:07Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
We show that Elect, Mask & Rescale-Merging (EMR-Merging) shows outstanding performance compared to existing merging methods.
EMR-Merging is tuning-free, thus requiring no data availability or any additional training while showing impressive performance.
arXiv Detail & Related papers (2024-05-23T05:25:45Z) - Boosting Continual Learning of Vision-Language Models via Mixture-of-Experts Adapters [65.15700861265432]
We present a parameter-efficient continual learning framework to alleviate long-term forgetting in incremental learning with vision-language models.
Our approach involves the dynamic expansion of a pre-trained CLIP model, through the integration of Mixture-of-Experts (MoE) adapters.
To preserve the zero-shot recognition capability of vision-language models, we introduce a Distribution Discriminative Auto-Selector.
arXiv Detail & Related papers (2024-03-18T08:00:23Z) - Unlocking Emergent Modularity in Large Language Models [27.12431620957652]
We show that standard Language Models (LMs) could be fine-tuned as their Mixture-of-Expert (MoEs) counterparts without introducing any extra parameters.
Our experiments demonstrate that fine-tuning EMoE effectively improves downstream in-domain and out-of-domain generalization compared with vanilla fine-tuning.
arXiv Detail & Related papers (2023-10-17T01:02:32Z) - MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided
Adaptation [68.30497162547768]
We propose MoEBERT, which uses a Mixture-of-Experts structure to increase model capacity and inference speed.
We validate the efficiency and effectiveness of MoEBERT on natural language understanding and question answering tasks.
arXiv Detail & Related papers (2022-04-15T23:19:37Z) - Parameter-Efficient Mixture-of-Experts Architecture for Pre-trained
Language Models [68.9288651177564]
We present a novel MoE architecture based on matrix product operators (MPO) from quantum many-body physics.
With the decomposed MPO structure, we can reduce the parameters of the original MoE architecture.
Experiments on the three well-known downstream natural language datasets based on GPT2 show improved performance and efficiency in increasing model capacity.
arXiv Detail & Related papers (2022-03-02T13:44:49Z) - Efficient Large Scale Language Modeling with Mixtures of Experts [61.45159383372181]
Mixture of Experts layers (MoEs) enable efficient scaling of language models through conditional computation.
This paper presents a detailed empirical study of how autoregressive MoE language models scale in comparison with dense models in a wide range of settings.
arXiv Detail & Related papers (2021-12-20T17:05:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.