Physically Explainable Deep Learning for Convective Initiation
Nowcasting Using GOES-16 Satellite Observations
- URL: http://arxiv.org/abs/2310.16015v1
- Date: Tue, 24 Oct 2023 17:18:44 GMT
- Title: Physically Explainable Deep Learning for Convective Initiation
Nowcasting Using GOES-16 Satellite Observations
- Authors: Da Fan, Steven J. Greybush, David John Gagne II, and Eugene E.
Clothiaux
- Abstract summary: Convection initiation (CI) nowcasting remains a challenging problem for both numerical weather prediction models and existing nowcasting algorithms.
In this study, object-based probabilistic deep learning models are developed to predict CI based on multichannel infrared GOES-R satellite observations.
- Score: 0.1874930567916036
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convection initiation (CI) nowcasting remains a challenging problem for both
numerical weather prediction models and existing nowcasting algorithms. In this
study, object-based probabilistic deep learning models are developed to predict
CI based on multichannel infrared GOES-R satellite observations. The data come
from patches surrounding potential CI events identified in Multi-Radar
Multi-Sensor Doppler weather radar products over the Great Plains region from
June and July 2020 and June 2021. An objective radar-based approach is used to
identify these events. The deep learning models significantly outperform the
classical logistic model at lead times up to 1 hour, especially on the false
alarm ratio. Through case studies, the deep learning model exhibits the
dependence on the characteristics of clouds and moisture at multiple levels.
Model explanation further reveals the model's decision-making process with
different baselines. The explanation results highlight the importance of
moisture and cloud features at different levels depending on the choice of
baseline. Our study demonstrates the advantage of using different baselines in
further understanding model behavior and gaining scientific insights.
Related papers
- WeatherReal: A Benchmark Based on In-Situ Observations for Evaluating Weather Models [11.016845506758841]
We introduce WeatherReal, a novel benchmark dataset for weather forecasting derived from global near-surface in-situ observations.
This paper details the sources and processing methodologies underlying the dataset, and illustrates the advantage of in-situ observations in capturing hyper-local and extreme weather.
Our work aims to advance the AI-based weather forecasting research towards a more application-focused and operation-ready approach.
arXiv Detail & Related papers (2024-09-14T08:53:46Z) - Neural Networks with LSTM and GRU in Modeling Active Fires in the Amazon [0.0]
This study presents a comprehensive methodology for modeling and forecasting the historical time series of active fire spots detected by the AQUA_M-T satellite in the Amazon, Brazil.
The approach employs a mixed Recurrent Neural Network (RNN) model, combining Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to predict the monthly accumulations of daily detected active fire spots.
arXiv Detail & Related papers (2024-09-04T13:11:59Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
This paper proposes a physics-AI hybrid model (i.e., WeatherGFT) which Generalizes weather forecasts to Finer-grained Temporal scales.
Specifically, we employ a carefully designed PDE kernel to simulate physical evolution on a small time scale.
We introduce a lead time-aware training framework to promote the generalization of the model at different lead times.
arXiv Detail & Related papers (2024-05-22T16:21:02Z) - Application of Long-Short Term Memory and Convolutional Neural Networks for Real-Time Bridge Scour Prediction [0.0]
We exploit the power of deep learning algorithms to forecast scour depth variations around bridge piers based on historical sensor monitoring data.
We investigated the performance of Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) models for real-time scour forecasting.
arXiv Detail & Related papers (2024-04-25T12:04:36Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Precipitation nowcasting with generative diffusion models [0.0]
We study the efficacy of diffusion models in handling the task of precipitation nowcasting.
Our work is conducted in comparison to the performance of well-established U-Net models.
arXiv Detail & Related papers (2023-08-13T09:51:16Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
We propose OpenSTL to categorize prevalent approaches into recurrent-based and recurrent-free models.
We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and forecasting weather.
We find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
arXiv Detail & Related papers (2023-06-20T03:02:14Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - TempSAL -- Uncovering Temporal Information for Deep Saliency Prediction [64.63645677568384]
We introduce a novel saliency prediction model that learns to output saliency maps in sequential time intervals.
Our approach locally modulates the saliency predictions by combining the learned temporal maps.
Our code will be publicly available on GitHub.
arXiv Detail & Related papers (2023-01-05T22:10:16Z) - A case study of spatiotemporal forecasting techniques for weather forecasting [4.347494885647007]
The correlations of real-world processes aretemporal, and the data generated by them exhibits both spatial and temporal evolution.
Time series-based models are a viable alternative to numerical forecasts.
We show that decompositiontemporal prediction models reduced computational costs while improving accuracy.
arXiv Detail & Related papers (2022-09-29T13:47:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.