Modeling of Fluctuations in Dynamical Optoelectronic Device Simulations
within a Maxwell-Density Matrix Langevin Approach
- URL: http://arxiv.org/abs/2310.16039v2
- Date: Wed, 31 Jan 2024 17:48:12 GMT
- Title: Modeling of Fluctuations in Dynamical Optoelectronic Device Simulations
within a Maxwell-Density Matrix Langevin Approach
- Authors: Johannes Popp (1), Johannes Stowasser (1), Michael A. Schreiber (1),
Lukas Seitner (1), Felix Hitzelhammer (2), Michael Haider (1), Gabriela
Slavcheva (2 and 3), Christian Jirauschek (1 and 4) ((1) TUM School of
Computation, Information and Technology, Technical University of Munich,
Garching, Germany (2) Institute of Physics, NAWI Graz, University of Graz,
Graz, Austria (3) Quantopticon, Chicago, IL, USA (4) TUM Center for Quantum
Engineering (ZQE), Garching, Germany)
- Abstract summary: We present a full-wave Maxwell-density tool simulation tool including c-number noise terms.
It is used to model the matrix of photonic dynamics in active devices, such as quantum lasers (QCLs) and quantum dot (QD) structures.
- Score: 0.8336877564004572
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a full-wave Maxwell-density matrix simulation tool including
c-number stochastic noise terms for the modeling of the spatiotemporal dynamics
in active photonic devices, such as quantum cascade lasers (QCLs) and quantum
dot (QD) structures. The coherent light-matter interaction in such devices
plays an important role in the generation of frequency combs and other
nonlinear and nonclassical optical phenomena. Since the emergence of nonlinear
and nonclassical features is directly linked to the noise properties, detailed
simulations of the noise characteristics are required for the development of
low-noise quantum optoelectronic sources. Our semiclassical simulation
framework is based on the Lindblad equation for the electron dynamics, coupled
with Maxwell's equations for the optical propagation in the laser waveguide.
Fluctuations arising from interactions of the optical field and quantum system
with their reservoirs are treated within the quantum Langevin theory. Here, the
fluctuations are included by adding stochastic c-number terms to the
Maxwell-density matrix equations. The implementation in the mbsolve dynamic
simulation framework is publicly available.
Related papers
- Hierarchy of approximations for describing quantum light from high-harmonic generation: A Fermi-Hubbard model study [0.0]
We present a hierarchy of approximations for the equations of motion for the photonic state.
We find that for the typical experimental situation of weak quantized-light-matter-coupling constant and at intensities well below the damage threshold, an explicit expression for the generated quantum light captures the high-harmonic spectrum quantitatively.
arXiv Detail & Related papers (2024-10-25T12:59:29Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Linear-scale simulations of quench dynamics [2.7615495205203318]
We develop a linear-scale computational simulation technique for the non-equilibrium dynamics of quantum quench systems.
An expansion-based method allows us to efficiently compute the Loschmidt echo for infinitely large systems.
We observe wave vector-independent dynamical phase transitions in self-dual localization models.
arXiv Detail & Related papers (2023-11-16T04:18:32Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Real-Space, Real-Time Approach to Quantum-Electrodynamical
Time-Dependent Density Functional Theory [55.41644538483948]
The equations are solved by time propagating the wave function on a tensor product of a Fock-space and real-space grid.
Examples include the coupling strength and light frequency dependence of the energies, wave functions, optical absorption spectra, and Rabi splitting magnitudes in cavities.
arXiv Detail & Related papers (2022-09-01T18:49:51Z) - Quantum simulation of weak-field light-matter interactions [0.0]
Simulation of the interaction of light with matter, including at the few-photon level, is important for understanding the optical and optoelectronic properties of materials.
We develop a quantum simulation framework for simulating such light-matter interactions on platforms with controllable bosonic degrees of freedom.
arXiv Detail & Related papers (2021-12-14T05:48:24Z) - Onset of non-Gaussian quantum physics in pulsed squeezing with
mesoscopic fields [1.2252572522254723]
We study the emergence of non-Gaussian quantum features in pulsed squeezed light generation with a mesoscopic number of pump photons.
We argue that the state of the art in nonlinear nanophotonics is quickly approaching this regime.
arXiv Detail & Related papers (2021-11-27T02:49:10Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes.
Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation.
Results show that a cubic interaction allows to increase the effective rates of both linear and nonlinear operations.
arXiv Detail & Related papers (2021-07-14T15:11:05Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Efficient simulation of ultrafast quantum nonlinear optics with matrix
product states [0.0]
We develop an algorithm to unravel the MPS quantum state into constituent temporal supermodes.
We observe the development of non-classical Wigner-function negativity in the solitonic mode and quantum corrections to the semiclassical dynamics of the pulse.
arXiv Detail & Related papers (2021-02-11T09:15:24Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.