論文の概要: Towards Large-scale Masked Face Recognition
- arxiv url: http://arxiv.org/abs/2310.16364v1
- Date: Wed, 25 Oct 2023 05:04:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-26 16:36:49.767999
- Title: Towards Large-scale Masked Face Recognition
- Title(参考訳): 大規模マスキング顔認識に向けて
- Authors: Manyuan Zhang, Bingqi Ma, Guanglu Song, Yunxiao Wang, Hongsheng Li, Yu
Liu
- Abstract要約: 新型コロナウイルス(COVID-19)が流行する中、ほとんどの人がマスクを着用している。
本稿では,ICCV MFR WebFace260M と InsightFace の制約のないトラックにテキスト分岐ソリューションを提示する。
- 参考スコア(独自算出の注目度): 44.380235958577785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: During the COVID-19 coronavirus epidemic, almost everyone is wearing masks,
which poses a huge challenge for deep learning-based face recognition
algorithms. In this paper, we will present our \textbf{championship} solutions
in ICCV MFR WebFace260M and InsightFace unconstrained tracks. We will focus on
four challenges in large-scale masked face recognition, i.e., super-large scale
training, data noise handling, masked and non-masked face recognition accuracy
balancing, and how to design inference-friendly model architecture. We hope
that the discussion on these four aspects can guide future research towards
more robust masked face recognition systems.
- Abstract(参考訳): 新型コロナウイルス(covid-19)の感染拡大中、ほぼ全員がマスクを着用しているため、ディープラーニングベースの顔認識アルゴリズムにとって大きな課題となっている。
本稿では,ICCV MFR WebFace260M と InsightFace の制約のないトラックに \textbf{championship} ソリューションを提案する。
大規模なマスク付き顔認識における4つの課題、すなわち、超大規模トレーニング、データノイズハンドリング、マスク付きおよび非マスク型顔認識精度バランス、推論に優しいモデルアーキテクチャの設計方法に焦点を当てる。
これら4つの側面に関する議論が、より堅牢な顔認識システムに向けた将来の研究を導くことを願っている。
関連論文リスト
- An Exploratory Study of Masked Face Recognition with Machine Learning
Algorithms [0.0]
新型コロナウイルス(COVID-19)のパンデミックで、マスクの使用は私たちの日常生活にとって重要になっている。
顔認識におけるマスク着用の効果は、まだ未検討の課題である。
我々は, SVC, KNN, LDA, DT, LR, NBの6つの従来の機械学習アルゴリズムを用いて, 最高性能の機械学習アルゴリズムを探索する。
論文 参考訳(メタデータ) (2023-06-14T14:50:23Z) - Mask-invariant Face Recognition through Template-level Knowledge
Distillation [3.727773051465455]
マスクは従来の顔認識システムの性能に影響を与える。
マスク不変顔認識ソリューション(MaskInv)を提案する。
蒸留された知識に加えて、学生ネットワークは、マージンベースのアイデンティティ分類損失による追加ガイダンスの恩恵を受ける。
論文 参考訳(メタデータ) (2021-12-10T16:19:28Z) - FocusFace: Multi-task Contrastive Learning for Masked Face Recognition [4.420321822469077]
SARS-CoV-2は科学界に直接的かつ間接的な課題を提示した。
顔認識手法は、マスクやマスクされていない個人に類似した精度で身元確認を行うのに苦労する。
本研究では,マルチタスクアーキテクチャであるFocusFaceを提案する。
論文 参考訳(メタデータ) (2021-10-28T08:17:12Z) - Balanced Masked and Standard Face Recognition [1.2149550080095914]
ICCV 2021のマスク付き顔認識チャレンジのWebfaceトラックとInsightface/Glint360Kトラックのための改良されたネットワークアーキテクチャ、データ拡張、トレーニング戦略について述べる。
論文 参考訳(メタデータ) (2021-10-04T15:41:05Z) - MLFW: A Database for Face Recognition on Masked Faces [56.441078419992046]
Masked LFW (MLFW) は、マスクのない顔からマスクされた顔を自動的に生成するツールである。
SOTAモデルの認識精度は、元の画像の精度と比較して、MLFWデータベース上で5%-16%低下する。
論文 参考訳(メタデータ) (2021-09-13T09:30:10Z) - End2End Occluded Face Recognition by Masking Corrupted Features [82.27588990277192]
最先端の一般的な顔認識モデルは、隠蔽された顔画像に対してうまく一般化しない。
本稿では,1つのエンドツーエンドのディープニューラルネットワークに基づいて,オクルージョンに頑健な新しい顔認識手法を提案する。
我々のアプローチは、深い畳み込みニューラルネットワークから破損した特徴を発見し、動的に学習されたマスクによってそれらをきれいにする。
論文 参考訳(メタデータ) (2021-08-21T09:08:41Z) - Masked Face Recognition Challenge: The InsightFace Track Report [79.77020394722788]
新型コロナウイルス(COVID-19)が流行する中、ほとんどの人が顔認証に挑戦するマスクを着用している。
本ワークショップでは,顔マスクの存在下でのベンチマークによる深層顔認識手法に着目した。
論文 参考訳(メタデータ) (2021-08-18T15:14:44Z) - Masked Face Recognition Challenge: The WebFace260M Track Report [81.57455766506197]
ICCV 2021におけるバイオメトリクスとマスク付き顔認識チャレンジ
WebFace260M Trackは、実用的なMFRのフロンティアを推進することを目的としている。
WebFace260M Trackの第1フェーズでは、69のチーム(トータル833ソリューション)がこの課題に参加している。
この挑戦には2021年10月1日までの第2フェーズと、進行中のリーダーボードがある。
論文 参考訳(メタデータ) (2021-08-16T15:51:51Z) - Contrastive Context-Aware Learning for 3D High-Fidelity Mask Face
Presentation Attack Detection [103.7264459186552]
顔認識システムには、顔提示攻撃検出(PAD)が不可欠である。
ほとんどの既存の3DマスクPADベンチマークにはいくつかの欠点があります。
現実世界のアプリケーションとのギャップを埋めるために、大規模なハイファイアリティマスクデータセットを紹介します。
論文 参考訳(メタデータ) (2021-04-13T12:48:38Z) - Masked Face Recognition Dataset and Application [28.2082082956263]
本研究では,MFDD(Masked Face Detection dataset),RMFRD(Real-world Masked Face Recognition dataset),SMFRD(Simulated Masked Face Recognition dataset)の3種類のマスク付き顔データセットを提案する。
開発したマルチグラニュラリティマスク顔認証モデルは,業界が報告した結果を上回る95%の精度を実現している。
論文 参考訳(メタデータ) (2020-03-20T04:15:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。