論文の概要: Graph Neural Networks with a Distribution of Parametrized Graphs
- arxiv url: http://arxiv.org/abs/2310.16401v3
- Date: Sat, 3 Feb 2024 04:45:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-07 04:30:51.233122
- Title: Graph Neural Networks with a Distribution of Parametrized Graphs
- Title(参考訳): パラメタライズドグラフの分布を持つグラフニューラルネットワーク
- Authors: See Hian Lee, Feng Ji, Kelin Xia and Wee Peng Tay
- Abstract要約: 複数のグラフをパラメータ化して生成するために潜在変数を導入する。
予測最大化フレームワークにおいて,ネットワークパラメータの最大推定値を得る。
- 参考スコア(独自算出の注目度): 27.40566674759208
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditionally, graph neural networks have been trained using a single
observed graph. However, the observed graph represents only one possible
realization. In many applications, the graph may encounter uncertainties, such
as having erroneous or missing edges, as well as edge weights that provide
little informative value. To address these challenges and capture additional
information previously absent in the observed graph, we introduce latent
variables to parameterize and generate multiple graphs. We obtain the maximum
likelihood estimate of the network parameters in an Expectation-Maximization
(EM) framework based on the multiple graphs. Specifically, we iteratively
determine the distribution of the graphs using a Markov Chain Monte Carlo
(MCMC) method, incorporating the principles of PAC-Bayesian theory. Numerical
experiments demonstrate improvements in performance against baseline models on
node classification for heterogeneous graphs and graph regression on chemistry
datasets.
- Abstract(参考訳): 従来、グラフニューラルネットワークは単一の観測グラフを使用して訓練されてきた。
しかし、観測されたグラフは1つしか実現できない。
多くの応用において、グラフは誤ったエッジや欠落、情報的価値の少ないエッジ重みなど不確実性に遭遇する可能性がある。
これらの課題に対処し、以前に観測されたグラフになかった追加情報をキャプチャするために、複数のグラフをパラメータ化し生成するための潜在変数を導入する。
複数のグラフに基づく期待最大化(EM)フレームワークにおいて,ネットワークパラメータの最大推定値を得る。
具体的には,マルコフ連鎖モンテカルロ法 (MCMC) を用いてグラフの分布を反復的に決定し,PAC-ベイジアン理論の原理を取り入れた。
数値実験により、異種グラフのノード分類と化学データセットのグラフ回帰におけるベースラインモデルに対する性能改善が示されている。
関連論文リスト
- Joint Network Topology Inference via a Shared Graphon Model [24.077455621015552]
観測結果から複数のネットワークのトポロジを推定する問題を考察する。
これは非パラメトリックなモデルであり、潜在的に異なるサイズのグラフを描画することができる。
論文 参考訳(メタデータ) (2022-09-17T02:38:58Z) - Graph Condensation via Receptive Field Distribution Matching [61.71711656856704]
本稿では,元のグラフを表す小さなグラフの作成に焦点をあてる。
我々は、元のグラフを受容体の分布とみなし、受容体が同様の分布を持つ小さなグラフを合成することを目的としている。
論文 参考訳(メタデータ) (2022-06-28T02:10:05Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Graphon-aided Joint Estimation of Multiple Graphs [24.077455621015552]
観測結果から複数のネットワークのトポロジを推定する問題を考察する。
これは非パラメトリックなモデルであり、潜在的に異なるサイズのグラフを描画することができる。
論文 参考訳(メタデータ) (2022-02-11T15:20:44Z) - Neighborhood Random Walk Graph Sampling for Regularized Bayesian Graph
Convolutional Neural Networks [0.6236890292833384]
本稿では,近隣ランダムウォークサンプリング(BGCN-NRWS)を用いたベイジアングラフ畳み込みネットワーク(Bayesian Graph Convolutional Network)を提案する。
BGCN-NRWSは、グラフ構造を利用したマルコフ・チェイン・モンテカルロ(MCMC)に基づくグラフサンプリングアルゴリズムを使用し、変分推論層を用いてオーバーフィッティングを低減し、半教師付きノード分類における最先端と比較して一貫して競合する分類結果を得る。
論文 参考訳(メタデータ) (2021-12-14T20:58:27Z) - Towards Graph Self-Supervised Learning with Contrastive Adjusted Zooming [48.99614465020678]
本稿では,グラフコントラスト適応ズームによる自己教師付きグラフ表現学習アルゴリズムを提案する。
このメカニズムにより、G-Zoomはグラフから複数のスケールから自己超越信号を探索して抽出することができる。
我々は,実世界のデータセットに関する広範な実験を行い,提案したモデルが常に最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2021-11-20T22:45:53Z) - Multilayer Clustered Graph Learning [66.94201299553336]
我々は、観測された層を代表グラフに適切に集約するために、データ忠実度用語として対照的な損失を用いる。
実験により,本手法がクラスタクラスタw.r.tに繋がることが示された。
クラスタリング問題を解くためのクラスタリングアルゴリズムを学習する。
論文 参考訳(メタデータ) (2020-10-29T09:58:02Z) - Dirichlet Graph Variational Autoencoder [65.94744123832338]
本稿では,グラフクラスタメンバシップを潜在因子とするDGVAE(Dirichlet Graph Variational Autoencoder)を提案する。
バランスグラフカットにおける低パス特性により、入力グラフをクラスタメンバシップにエンコードする、Heattsと呼ばれるGNNの新しい変種を提案する。
論文 参考訳(メタデータ) (2020-10-09T07:35:26Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z) - The Power of Graph Convolutional Networks to Distinguish Random Graph
Models: Short Version [27.544219236164764]
グラフ畳み込みネットワーク(GCN)はグラフ表現学習において広く使われている手法である。
サンプルグラフの埋め込みに基づいて異なるランダムグラフモデルを区別するGCNのパワーについて検討する。
論文 参考訳(メタデータ) (2020-02-13T17:58:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。