論文の概要: An Integrative Paradigm for Enhanced Stroke Prediction: Synergizing
XGBoost and xDeepFM Algorithms
- arxiv url: http://arxiv.org/abs/2310.16430v1
- Date: Wed, 25 Oct 2023 07:55:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-26 16:06:53.122704
- Title: An Integrative Paradigm for Enhanced Stroke Prediction: Synergizing
XGBoost and xDeepFM Algorithms
- Title(参考訳): ストローク予測強化のための積分パラダイム:XGBoostとxDeepFMアルゴリズムの相乗化
- Authors: Weinan Dai, Yifeng Jiang, Chengjie Mou, Chongyu Zhang
- Abstract要約: 本稿では,XGBoostとxDeepFMアルゴリズムのパワーを組み合わせたアンサンブルモデルを提案する。
本研究の目的は,既存のストローク予測モデルの改良であり,精度とロバスト性の向上である。
- 参考スコア(独自算出の注目度): 1.064427783926208
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stroke prediction plays a crucial role in preventing and managing this
debilitating condition. In this study, we address the challenge of stroke
prediction using a comprehensive dataset, and propose an ensemble model that
combines the power of XGBoost and xDeepFM algorithms. Our work aims to improve
upon existing stroke prediction models by achieving higher accuracy and
robustness. Through rigorous experimentation, we validate the effectiveness of
our ensemble model using the AUC metric. Through comparing our findings with
those of other models in the field, we gain valuable insights into the merits
and drawbacks of various approaches. This, in turn, contributes significantly
to the progress of machine learning and deep learning techniques specifically
in the domain of stroke prediction.
- Abstract(参考訳): ストローク予測は、この不安定な状態の予防と管理において重要な役割を果たす。
本研究では,包括的データセットを用いた脳卒中予測の課題に対処し,XGBoostアルゴリズムとxDeepFMアルゴリズムのパワーを組み合わせたアンサンブルモデルを提案する。
本研究の目的は,既存のストローク予測モデルの改良であり,精度とロバスト性の向上である。
厳密な実験を通じて,AUCメトリックを用いたアンサンブルモデルの有効性を検証する。
この分野の他のモデルと比較することで、様々なアプローチのメリットと欠点に対する貴重な洞察を得ることができます。
これは、特に脳卒中予測領域における機械学習とディープラーニング技術の進歩に大きく貢献する。
関連論文リスト
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
本稿では,スコアマッチングを組み合わせた勾配向上アルゴリズムとして,SSM(Supervised Score-based Model)を提案する。
推測時間と予測精度のバランスをとるため,SSMの学習とサンプリングに関する理論的解析を行った。
我々のモデルは、精度と推測時間の両方で既存のモデルより優れています。
論文 参考訳(メタデータ) (2024-11-02T07:06:53Z) - CAVE: Classifying Abnormalities in Video Capsule Endoscopy [0.1937002985471497]
本研究では,複雑な画像データセットの分類精度を向上させるために,アンサンブルに基づくアプローチを検討する。
各モデルのユニークな特徴抽出機能を活用し、全体的な精度を向上させる。
実験により、アンサンブルは難易度と不均衡度の高いクラス間で高い精度と堅牢性を達成することが示された。
論文 参考訳(メタデータ) (2024-10-26T17:25:08Z) - Optimizing Disease Prediction with Artificial Intelligence Driven Feature Selection and Attention Networks [0.0]
この記事では、先駆的なアンサンブル特徴選択モデルを紹介します。
提案モデルの中心には、最適な特徴選択のための新しいアプローチであるSEV-EBアルゴリズムがある。
HSC-AttentionNetが導入され、モデルが健康データ内の短期パターンと長期依存関係の両方をキャプチャできる。
論文 参考訳(メタデータ) (2024-07-31T14:12:27Z) - Learning Long-Horizon Predictions for Quadrotor Dynamics [48.08477275522024]
四元数に対する長軸予測力学を効率的に学習するための鍵となる設計選択について検討する。
逐次モデリング手法は,他のタイプの手法と比較して,合成誤差を最小限に抑える上での優位性を示す。
本稿では,モジュール性の向上を図りながら,学習プロセスをさらに単純化する,疎結合な動的学習手法を提案する。
論文 参考訳(メタデータ) (2024-07-17T19:06:47Z) - A Model-Based Approach for Improving Reinforcement Learning Efficiency
Leveraging Expert Observations [9.240917262195046]
本稿では,拡張損失関数における各成分の重みを自動的に調整するアルゴリズムを提案する。
様々な連続制御タスクの実験は、提案アルゴリズムが様々なベンチマークより優れていることを示した。
論文 参考訳(メタデータ) (2024-02-29T03:53:02Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
フェデレートされた学習は、微調整された特徴をスキイングし、モデルの堅牢性を損なうリスクがある。
3つのロバスト性指標を導入し、多様なロバストデータセットで実験を行う。
提案手法は,パラメータ効率のよい微調整手法を含む多種多様なシナリオにまたがるロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2024-01-25T09:18:51Z) - Boosted Control Functions [10.503777692702952]
本研究の目的は,因果効果推定と予測タスクのギャップを埋めることである。
我々は,機械学習の分布場と同時方程式モデル,およびエコノメティクスの制御関数との新たな接続を確立する。
このフレームワーク内では、予測モデルに対する不変性の強い概念を提案し、それを既存の(ウィーカー)バージョンと比較する。
論文 参考訳(メタデータ) (2023-10-09T15:43:46Z) - Understanding Augmentation-based Self-Supervised Representation Learning
via RKHS Approximation and Regression [53.15502562048627]
最近の研究は、自己教師付き学習とグラフラプラシアン作用素のトップ固有空間の近似との関係を構築している。
この研究は、増強に基づく事前訓練の統計的分析に発展する。
論文 参考訳(メタデータ) (2023-06-01T15:18:55Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
予測情報ゲイン(EPIG)は、パラメータではなく予測空間における情報ゲインを測定する。
EPIGは、さまざまなデータセットやモデルにわたるBALDと比較して、予測パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-04-17T10:59:57Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。