論文の概要: Learning Long-Horizon Predictions for Quadrotor Dynamics
- arxiv url: http://arxiv.org/abs/2407.12964v1
- Date: Wed, 17 Jul 2024 19:06:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 19:33:23.302814
- Title: Learning Long-Horizon Predictions for Quadrotor Dynamics
- Title(参考訳): 四回転子ダイナミクスのための長軸予測の学習
- Authors: Pratyaksh Prabhav Rao, Alessandro Saviolo, Tommaso Castiglione Ferrari, Giuseppe Loianno,
- Abstract要約: 四元数に対する長軸予測力学を効率的に学習するための鍵となる設計選択について検討する。
逐次モデリング手法は,他のタイプの手法と比較して,合成誤差を最小限に抑える上での優位性を示す。
本稿では,モジュール性の向上を図りながら,学習プロセスをさらに単純化する,疎結合な動的学習手法を提案する。
- 参考スコア(独自算出の注目度): 48.08477275522024
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurate modeling of system dynamics is crucial for achieving high-performance planning and control of robotic systems. Although existing data-driven approaches represent a promising approach for modeling dynamics, their accuracy is limited to a short prediction horizon, overlooking the impact of compounding prediction errors over longer prediction horizons. Strategies to mitigate these cumulative errors remain underexplored. To bridge this gap, in this paper, we study the key design choices for efficiently learning long-horizon prediction dynamics for quadrotors. Specifically, we analyze the impact of multiple architectures, historical data, and multi-step loss formulation. We show that sequential modeling techniques showcase their advantage in minimizing compounding errors compared to other types of solutions. Furthermore, we propose a novel decoupled dynamics learning approach, which further simplifies the learning process while also enhancing the approach modularity. Extensive experiments and ablation studies on real-world quadrotor data demonstrate the versatility and precision of the proposed approach. Our outcomes offer several insights and methodologies for enhancing long-term predictive accuracy of learned quadrotor dynamics for planning and control.
- Abstract(参考訳): システムダイナミクスの正確なモデリングは、ロボットシステムの高性能な計画と制御を実現するために不可欠である。
既存のデータ駆動型アプローチは、力学をモデル化するための有望なアプローチであるが、その精度は、より長い予測地平線に対する複雑な予測エラーの影響を見越して、短い予測地平線に限られている。
これらの累積誤差を緩和する戦略はいまだ未解明のままである。
本稿では,このギャップを埋めるために,四辺形に対する長軸予測力学を効率的に学習するための重要な設計選択について検討する。
具体的には、複数のアーキテクチャ、履歴データ、多段階損失定式化の影響を分析する。
逐次モデリング手法は,他のタイプの手法と比較して,合成誤差を最小限に抑える上での優位性を示す。
さらに,モジュール性の向上を図りながら,学習プロセスをさらに単純化する,疎結合な動的学習手法を提案する。
実世界の四重項データに関する大規模な実験とアブレーション研究は、提案手法の汎用性と精度を実証している。
我々の成果は、計画と制御のための学習された四重項力学の長期予測精度を高めるための洞察と方法論を提供する。
関連論文リスト
- Spatiotemporal Observer Design for Predictive Learning of
High-Dimensional Data [6.214987339902511]
オブザーバ理論を指導したStemporalと呼ばれるディープラーニングアーキテクチャは、オブザーバの高次元データを予測学習するために設計されている。
このフレームワークは、一段階と多段階の両方のシナリオで正確な予測を行う時間的ダイナミクスをキャプチャすることができる。
論文 参考訳(メタデータ) (2024-02-23T12:28:31Z) - Enhancing Dynamical System Modeling through Interpretable Machine
Learning Augmentations: A Case Study in Cathodic Electrophoretic Deposition [0.8796261172196743]
本稿では,物理システムのモデリング向上を目的とした包括的データ駆動フレームワークを提案する。
実証的応用として,電顕的電気泳動沈着(EPD)のモデル化を追求する。
論文 参考訳(メタデータ) (2024-01-16T14:58:21Z) - An Integrative Paradigm for Enhanced Stroke Prediction: Synergizing
XGBoost and xDeepFM Algorithms [1.064427783926208]
本稿では,XGBoostとxDeepFMアルゴリズムのパワーを組み合わせたアンサンブルモデルを提案する。
本研究の目的は,既存のストローク予測モデルの改良であり,精度とロバスト性の向上である。
論文 参考訳(メタデータ) (2023-10-25T07:55:02Z) - Understanding Self-Predictive Learning for Reinforcement Learning [61.62067048348786]
強化学習のための自己予測学習の学習ダイナミクスについて検討する。
本稿では,2つの表現を同時に学習する新しい自己予測アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-06T20:43:37Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Planning with Diffusion for Flexible Behavior Synthesis [125.24438991142573]
我々は、できるだけ多くの軌道最適化パイプラインをモデリング問題に折り畳むことがどう見えるか検討する。
我々の技術的アプローチの核心は、軌道を反復的にデノベーションすることで計画する拡散確率モデルにある。
論文 参考訳(メタデータ) (2022-05-20T07:02:03Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Learning Accurate Long-term Dynamics for Model-based Reinforcement
Learning [7.194382512848327]
より長い地平線で安定的に予測するために, 状態作用データに対する教師付き学習のための新しいパラメータ化を提案する。
シミュレーションおよび実験によるロボット作業の結果,軌道に基づくモデルにより,より正確な長期予測が得られた。
論文 参考訳(メタデータ) (2020-12-16T18:47:37Z) - Forethought and Hindsight in Credit Assignment [62.05690959741223]
我々は、前向きモデルや後向きモデルによる後向き操作による予測として使われる計画の利益と特異性を理解するために活動する。
本稿では,予測を(再)評価すべき状態の選択に主眼を置いて,計画におけるモデルの利用について検討する。
論文 参考訳(メタデータ) (2020-10-26T16:00:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。